Nighttime sap flow is a potentially important factor that affects whole-plant water balance and water-use efficiency (WUE). Its functions include predawn disequilibrium between plant and soil water potentials as wel...Nighttime sap flow is a potentially important factor that affects whole-plant water balance and water-use efficiency (WUE). Its functions include predawn disequilibrium between plant and soil water potentials as well as between the increments of oxygen supply and nutrient uptake. However, main factors that drive nighttime sap flow remain unclear, and researches related to the relationship between nighttime sap flow velocity and environmental factors are limited. Accordingly, we investigated the variations in the nighttime sap flow of Populus euphratica in a desert riparian forest of an extremely arid region, Northwest China. Results indicated that P. euphratica sap flow occurred throughout the night during the growing season because of the partial stomata opening. Nighttime sap flow for the P. euphratica forest accounted for 31%-47% of its daily sap flow during the growing season. The high value of nighttime sap flow could be the result of high stomatal conductance and could have significant implications for water budgets. Throughout the whole growing season, nighttime sap flow velocity of P. euphratica was positively correlated with the vapor pressure deficit (VPD), air temperature and soil water content. We found that VPD and soil water content were the main driving factors for nighttime sap flow of P. euphratica.展开更多
Seasonal and microhabitat variations of chemical constituents of foliar organic carbon (C), total nitrogen (N), total phosphorus (P), and total potassium (K), in Populus euphratica growing in desert riparian f...Seasonal and microhabitat variations of chemical constituents of foliar organic carbon (C), total nitrogen (N), total phosphorus (P), and total potassium (K), in Populus euphratica growing in desert riparian forests in northwestern China and their correlations were studied. Results show that ranges of C, N, P and K contents in the leaves ofP. euphratica were 39.08%-46.16%, 0.28%-2.81%, 0.05%-0.18% and 0.35%-2.03%, with means of 43.51%, 1.49%, 0.102% and 1.17%, respectively. The ratio of C/N, C/P and N/P changed from 16.26 to 146.61, from 258.08 to 908.67 and from 2.89 to 26.67; the mean was 37.24, 466.27 and 15.14, respectively. The mean N content was significantly lower than of deciduous trees in China, but the mean P content was nearly equivalent. The ratio of C/N was remarkably higher than of global land plants. The ratio of N/P indicated that growth ofP. euphratica was jointly limited by N and P nutrient deficiency. During the growth season, total trends of leaf C, N, P and K contents decreased. The max- imum appeared in May, and the minimum in September. Among microhabitats, C, N and K contents gradually increased from ri- parian lowland, flatland, sandpile, Gobi and dune, but C/N ratio was opposite, and P content was not apparent. Foliar C content was extremely, significantly and positively correlated with N and K contents, respectively. The relationships of N-K and P-K were both significantly positive.展开更多
Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only he...Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin.展开更多
In the present study, the heat pulse technique was applied to investigate the stem sap flow of Populus euphratica in a desert riparian forest in an extreme arid region from April to October 2003 and from May to Octobe...In the present study, the heat pulse technique was applied to investigate the stem sap flow of Populus euphratica in a desert riparian forest in an extreme arid region from April to October 2003 and from May to October 2004. The experimental sites were in Qidaoqiao (101 °10′ E, 41°59′ N) and Bayantaolai farm (101°14′ E, 42°01′ N) in Ejina county, in the low reaches of the Heihe River, China. The results indicated that the diurnal change in the velocity of sap flow showed minor fluctuations. At night, the rising of sap flow could be observed in the main tree species because of root pressure. During the growing season, the maximum average velocity was observed in July, followed by August, and the same velocity was observed in September and May; the minimum velocity was observed in October. The transpiration from June to August during the growing season accounted for approximately 70% of the annual total transpiration. The sap flow velocity of P. euphratica trees of different ages could be arranged in the order: 15 yr 〉 25 yr 〉 50 yr. Sap flow velocity was closely related to changes in micrometeorological factors, with average sap flow velocity showing a significant linear correlation with net radiation, air temperature and relative humidity.展开更多
Evapotranspiration(ET) and its controlling mechanism over the desert riparian forests in arid regions are the important scientific basis for the water resources managements of the lower reaches of the inland rivers of...Evapotranspiration(ET) and its controlling mechanism over the desert riparian forests in arid regions are the important scientific basis for the water resources managements of the lower reaches of the inland rivers of China. Nearly three years of continuous measurements of surface ET, soil water content at different depths and groundwater table over a typical Tamarix spp. stand and a typical Populus euphratica stand were conducted in the lower reach of the Tarim River. The ET seasonal trends in the growing season were controlled by plant phenology, and ET in non-growing season was weak. The diurnal variations of ET resulting from the comprehensive effects of all atmospheric factors were significantly related with reference ET. The spatial pattern of ET was determined by vegetation LAI, more vegetation coverage, more ET amount. Groundwater is the water source of surface ET, and the soil water in shallow layers hardly took part in the water exchange in the groundwatersoil-plant-air system. The temporal processes of ET over the Tamarix stand and the Populus stand were similar, but the water consumption of the well-grown Populus euphratica was higher than that of the well-grown Tamarix spp. Further analysis indicates that plant transpiration accounts for most of the surface ET, with soil evaporation weak and negligible; groundwater table is a crucial factor influencing ET over the desert riparian forests, groundwater influences the processes and amounts of ET by controlling the growth and spatial distribution of desert riparian forests; quantifying the water stress of desert riparian forests using groundwater table is more appropriate, rather than soil water content. Based on the understanding of ET and water movements in the groundwater-soil-plant-air system, a generalized framework expressing the water cycling and its key controlling mechanism in the lower reaches of the inland rivers of China is described, and a simple model to estimate water requirements of the desert riparian forests is presented.展开更多
The object of this paper is the different plant communities in the Ejina desert riparian forest. Groundwater depth, soil moisture, plant water potential, relative leaf moisture content and water use efficiency was mon...The object of this paper is the different plant communities in the Ejina desert riparian forest. Groundwater depth, soil moisture, plant water potential, relative leaf moisture content and water use efficiency was monitored, and the response of soil moisture and plant ecology to the groundwater depth and the water use efficiency of the different plant communities was analyzed. The results showed that:(1) Along with the groundwater depth increasing, predawn and midday water potential of the plants, with the exception of Reaumuria soongorica, did not decrease significantly, indicating that when the groundwater depth is less than 3 m, the plant communities in the range of 4 km from the river way did not suffer or slightly suffer from water stress;(2) The distribution of higher soil moisture content within 0–3 m soil layer is suitable with the plants’ root system, as indicated in the communities of coexisting overripe Populus euphratica or Taramrix chinensis, both of which can release excessive water into soil for shallow rooted shrubs or herbaceous plants when there is water shortage;(3) R. soongorica can absorb deep soil moisture through deep roots for their own survival;(4) The community consisting of Sophora alopecuroides, Karelinia caspica, T. chinensis, and overripe P. euphratica has the best species combination for restoring the damaged eco-environment in the lower reaches of Heihe River;(5) The order of plants’ relative leaf water contents is K. caspica > S. alopecuroides > young P. euphratica > overripe P. euphratica > mature P. euphratica = T. chinensis coexisting with other species > single R. soongorica > single T. chinensis and the order of WUE is single T. chinensis > single R. soongorica > T. chinensis living in symbiosis with other species > S. alopecuroides = young P. euphratica > mature P. euphratica > overripe P. euphratica > K. caspica. Therefore, with ample soil moisture, the plant community helps rapid growth of T. chinensis, young P. euphratica and R. soongorica plants of less moisture content. Despite this they do not have much water storage capability, but have strong drought resistance, and higher moisture contents of S. alopecuroides and K. caspica, thus leaving them with poor drought resistance. Overall, the desert riparian forest plant community in the lower reaches of Heihe River helps the species of higher WUE live on it.展开更多
By using the theories and methods of landscape ecology and the technology of GIS and RS, a study has been carried out on the responses of distribution pattern of desert riparian forest to hydrologic process on the bas...By using the theories and methods of landscape ecology and the technology of GIS and RS, a study has been carried out on the responses of distribution pattern of desert riparian forest to hydrologic process on the basis of the hydrologic data from 1990 to 2000 and the TM image of 2001 year. The results showed that: (1) there appears an even distribution pattern for the relative forest area in oasis, however, the degenerated forest diaplays an increasing tendency from west to east; (2) the desert riparian forest in Ejina is in completely degenerated process at the patch scale; (3) the number of patch is influenced not only by hydrologic process,but also by agricultural activity such as cultivation. The severe deterioration of the degraded vegetation in whole oasis initiates from lower reaches, and gradually impels to upstream; the fragmentation of landscape in the terminal site is more obvious, which is influenced by river shape and decreasing flux of water. It is found that the influence of surface hydrologic process to the ground hydrologic process of desert riparian forest in Ejina oasis is little for the recent ten years. The relative area of the degenerated forest increased with increasing ground water depth in the direction of parallel to river channel. On the contrary, in the direction perpendicular to river channel, there is a decreasing tendency for the average patch area of the forest and the degenerated forest with increasing ground water depth.展开更多
基金supported by the Major Research Plan of the National Natural Science Foundation of China (91025024)the Key Project of the Chinese Academy of Sciences (KZZD-EW-04-05)the West Light Foundation of the Chinese Academy of Sciences
文摘Nighttime sap flow is a potentially important factor that affects whole-plant water balance and water-use efficiency (WUE). Its functions include predawn disequilibrium between plant and soil water potentials as well as between the increments of oxygen supply and nutrient uptake. However, main factors that drive nighttime sap flow remain unclear, and researches related to the relationship between nighttime sap flow velocity and environmental factors are limited. Accordingly, we investigated the variations in the nighttime sap flow of Populus euphratica in a desert riparian forest of an extremely arid region, Northwest China. Results indicated that P. euphratica sap flow occurred throughout the night during the growing season because of the partial stomata opening. Nighttime sap flow for the P. euphratica forest accounted for 31%-47% of its daily sap flow during the growing season. The high value of nighttime sap flow could be the result of high stomatal conductance and could have significant implications for water budgets. Throughout the whole growing season, nighttime sap flow velocity of P. euphratica was positively correlated with the vapor pressure deficit (VPD), air temperature and soil water content. We found that VPD and soil water content were the main driving factors for nighttime sap flow of P. euphratica.
基金supported by the National Natural Science Foundation (40861026,40801001)Major project of the National Natural Science Foundation (91025024)+1 种基金Science and Technology Department Project of Qinghai Province(2010-Z-706,2011-Z-743)the Western Light Project of Chinese Academy of Sciences (2009-14)
文摘Seasonal and microhabitat variations of chemical constituents of foliar organic carbon (C), total nitrogen (N), total phosphorus (P), and total potassium (K), in Populus euphratica growing in desert riparian forests in northwestern China and their correlations were studied. Results show that ranges of C, N, P and K contents in the leaves ofP. euphratica were 39.08%-46.16%, 0.28%-2.81%, 0.05%-0.18% and 0.35%-2.03%, with means of 43.51%, 1.49%, 0.102% and 1.17%, respectively. The ratio of C/N, C/P and N/P changed from 16.26 to 146.61, from 258.08 to 908.67 and from 2.89 to 26.67; the mean was 37.24, 466.27 and 15.14, respectively. The mean N content was significantly lower than of deciduous trees in China, but the mean P content was nearly equivalent. The ratio of C/N was remarkably higher than of global land plants. The ratio of N/P indicated that growth ofP. euphratica was jointly limited by N and P nutrient deficiency. During the growth season, total trends of leaf C, N, P and K contents decreased. The max- imum appeared in May, and the minimum in September. Among microhabitats, C, N and K contents gradually increased from ri- parian lowland, flatland, sandpile, Gobi and dune, but C/N ratio was opposite, and P content was not apparent. Foliar C content was extremely, significantly and positively correlated with N and K contents, respectively. The relationships of N-K and P-K were both significantly positive.
基金supported by the National Key Research and Development program (2016YFC0400908)the National Natural Science Foundation of China (Nos. 41101026, 31370466)the STS project of Chinese academy of sciences (29Y829731)
文摘Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin.
基金Supported by the National Natural Science Foundation of China (40501012), the Special Program for Key Basic Research of the Ministry of Science and Technology, China (2005ccA05200) and International Partnership Creative Group, the Chinese Academy of Sciences (CXTD-Z2005-2).
文摘In the present study, the heat pulse technique was applied to investigate the stem sap flow of Populus euphratica in a desert riparian forest in an extreme arid region from April to October 2003 and from May to October 2004. The experimental sites were in Qidaoqiao (101 °10′ E, 41°59′ N) and Bayantaolai farm (101°14′ E, 42°01′ N) in Ejina county, in the low reaches of the Heihe River, China. The results indicated that the diurnal change in the velocity of sap flow showed minor fluctuations. At night, the rising of sap flow could be observed in the main tree species because of root pressure. During the growing season, the maximum average velocity was observed in July, followed by August, and the same velocity was observed in September and May; the minimum velocity was observed in October. The transpiration from June to August during the growing season accounted for approximately 70% of the annual total transpiration. The sap flow velocity of P. euphratica trees of different ages could be arranged in the order: 15 yr 〉 25 yr 〉 50 yr. Sap flow velocity was closely related to changes in micrometeorological factors, with average sap flow velocity showing a significant linear correlation with net radiation, air temperature and relative humidity.
基金supported by the National Natural Science Foundation of China(Grant No.41271050)the National Basic Research Program of China(Grant No.2010CB951002)
文摘Evapotranspiration(ET) and its controlling mechanism over the desert riparian forests in arid regions are the important scientific basis for the water resources managements of the lower reaches of the inland rivers of China. Nearly three years of continuous measurements of surface ET, soil water content at different depths and groundwater table over a typical Tamarix spp. stand and a typical Populus euphratica stand were conducted in the lower reach of the Tarim River. The ET seasonal trends in the growing season were controlled by plant phenology, and ET in non-growing season was weak. The diurnal variations of ET resulting from the comprehensive effects of all atmospheric factors were significantly related with reference ET. The spatial pattern of ET was determined by vegetation LAI, more vegetation coverage, more ET amount. Groundwater is the water source of surface ET, and the soil water in shallow layers hardly took part in the water exchange in the groundwatersoil-plant-air system. The temporal processes of ET over the Tamarix stand and the Populus stand were similar, but the water consumption of the well-grown Populus euphratica was higher than that of the well-grown Tamarix spp. Further analysis indicates that plant transpiration accounts for most of the surface ET, with soil evaporation weak and negligible; groundwater table is a crucial factor influencing ET over the desert riparian forests, groundwater influences the processes and amounts of ET by controlling the growth and spatial distribution of desert riparian forests; quantifying the water stress of desert riparian forests using groundwater table is more appropriate, rather than soil water content. Based on the understanding of ET and water movements in the groundwater-soil-plant-air system, a generalized framework expressing the water cycling and its key controlling mechanism in the lower reaches of the inland rivers of China is described, and a simple model to estimate water requirements of the desert riparian forests is presented.
基金supported financially by the National Natural Science Foundation of China(Grant No.91025025)National Basic Research Program of China(Grant.No.2010CB951003)
文摘The object of this paper is the different plant communities in the Ejina desert riparian forest. Groundwater depth, soil moisture, plant water potential, relative leaf moisture content and water use efficiency was monitored, and the response of soil moisture and plant ecology to the groundwater depth and the water use efficiency of the different plant communities was analyzed. The results showed that:(1) Along with the groundwater depth increasing, predawn and midday water potential of the plants, with the exception of Reaumuria soongorica, did not decrease significantly, indicating that when the groundwater depth is less than 3 m, the plant communities in the range of 4 km from the river way did not suffer or slightly suffer from water stress;(2) The distribution of higher soil moisture content within 0–3 m soil layer is suitable with the plants’ root system, as indicated in the communities of coexisting overripe Populus euphratica or Taramrix chinensis, both of which can release excessive water into soil for shallow rooted shrubs or herbaceous plants when there is water shortage;(3) R. soongorica can absorb deep soil moisture through deep roots for their own survival;(4) The community consisting of Sophora alopecuroides, Karelinia caspica, T. chinensis, and overripe P. euphratica has the best species combination for restoring the damaged eco-environment in the lower reaches of Heihe River;(5) The order of plants’ relative leaf water contents is K. caspica > S. alopecuroides > young P. euphratica > overripe P. euphratica > mature P. euphratica = T. chinensis coexisting with other species > single R. soongorica > single T. chinensis and the order of WUE is single T. chinensis > single R. soongorica > T. chinensis living in symbiosis with other species > S. alopecuroides = young P. euphratica > mature P. euphratica > overripe P. euphratica > K. caspica. Therefore, with ample soil moisture, the plant community helps rapid growth of T. chinensis, young P. euphratica and R. soongorica plants of less moisture content. Despite this they do not have much water storage capability, but have strong drought resistance, and higher moisture contents of S. alopecuroides and K. caspica, thus leaving them with poor drought resistance. Overall, the desert riparian forest plant community in the lower reaches of Heihe River helps the species of higher WUE live on it.
基金supported by Grand Project of Knowledge Innovation Program of Chinese Academy of Sciences(Grand Nos.KZCX3-SW-329 and KZCX1-09)National Natural Science Foundation of China(Grand No.40235053).
文摘By using the theories and methods of landscape ecology and the technology of GIS and RS, a study has been carried out on the responses of distribution pattern of desert riparian forest to hydrologic process on the basis of the hydrologic data from 1990 to 2000 and the TM image of 2001 year. The results showed that: (1) there appears an even distribution pattern for the relative forest area in oasis, however, the degenerated forest diaplays an increasing tendency from west to east; (2) the desert riparian forest in Ejina is in completely degenerated process at the patch scale; (3) the number of patch is influenced not only by hydrologic process,but also by agricultural activity such as cultivation. The severe deterioration of the degraded vegetation in whole oasis initiates from lower reaches, and gradually impels to upstream; the fragmentation of landscape in the terminal site is more obvious, which is influenced by river shape and decreasing flux of water. It is found that the influence of surface hydrologic process to the ground hydrologic process of desert riparian forest in Ejina oasis is little for the recent ten years. The relative area of the degenerated forest increased with increasing ground water depth in the direction of parallel to river channel. On the contrary, in the direction perpendicular to river channel, there is a decreasing tendency for the average patch area of the forest and the degenerated forest with increasing ground water depth.