Radial well filled with phase change material has been proposed as a novel sand control method for hydrate exploitation.In order to reveal the sand control mechanism,CFD-DEM coupling method is applied to simulate the ...Radial well filled with phase change material has been proposed as a novel sand control method for hydrate exploitation.In order to reveal the sand control mechanism,CFD-DEM coupling method is applied to simulate the migration,settlement,and blockage processes of sand particles in the radial well.The obtained results indicate that three scenarios have been recognized for sand particles passing through sand control medium,based on the diameter ratio of sand control medium to sand particle(D_(d)):fully passing(D_(d)=8.75-22.5),partially passing and partially blocked(D_(d)=3.18-5.63),and completely blocked(D_(d)=2.18-3.21).After being captured by the sand control medium,sand particles can block pores,which increases fluid flow resistance and causes a certain pressure difference in the radial well.The pressure in the radial well should be lower than the hydrate phase equilibrium pressure during sand control design,for the purpose of promoting hydrate decomposition,and sand capture.The length of the radial well should be optimized based on the reservoir pore pressure,production pressure difference,bottom hole pressure,and the pressure gradient in the radial well.It should be noticed that the sand control medium leads to a decrease in permeability after sand particles captured.Even the permeability is reduced to several hundred millidarcy,it is still sufficient to ensure the effective flow of gas and water after hydrate decomposition.Increasing fluid velocity reduces the blocking capacity of the sand control medium,mainly because of deterioration in bridging between sand particles.展开更多
As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and g...As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and gas well.However,most screens only consider the influence of the internal sand retaining medium parameters in the sand control performance design while ignoring the influence of the plugging of the punching screen on the overall sand retaining performance of the screen.To explore the clogging mechanism of the punching screen,this paper established the clogging mechanism calculation model of a single punching screen sand control unit by using the computational fluid mechanics-discrete element method(CFD-DEM)combined method.According to the combined motion of particles and fluids,the influence of the internal flow state on particle motion and accumulation was analyzed.The results showed that(1)the clogging process of the punching sand control unit is divided into three stages:initial clogging,aggravation of clogging and stability of clogging.In the initial stage of blockage,coarse particles form a loose bridge structure,and blockage often occurs preferentially at the streamline gathering place below chamfering inside the sand control unit.In the stage of blockage intensification,the particle mass develops into a relatively complete sand bridge,which develops from both ends of the opening to the center of the opening.In the stable plugging stage,the sand deposits show a“fan shape”and form a“V-shaped”gully inside the punching slot element.(2)Under a certain reservoir particle-size distribution,The slit length and opening height have a large influence on the permeability and blockage rate,while the slit width size has little influence on the permeability and blockage rate.The microscopic clogging mechanism and its law of the punching screen prevention unit are proposed in this study,which has some field guidance significance for the design of punching screen and sand prevention selection.展开更多
Based on the general requirements of the coordinated development of"ecological livable"and"affluent life"in the rural revitalization strategy,the evaluation index system of desertification control ...Based on the general requirements of the coordinated development of"ecological livable"and"affluent life"in the rural revitalization strategy,the evaluation index system of desertification control was constructed,the interaction between desertification control and regional social economy and the internal space-time coordination mechanism were explored,and the quality of desertification control and its coordination degree with regional economic development were quantitatively analyzed.The decoupling mechanism of desertification governance society economy system were analyzed,and the high level for the government to promote desertification governance,constructing ecological economy coordinated development pattern to provide decision basis to Xizang desertification governance-social economic system interaction and coupling coordination development as the research object,introducing the coupling decoupling model to measure the coupling coordination model and system coordination and decoupling decoupling.Desertification control in Xizang shows a trend of gradual improvement,but the overall level is still not high and there is a lot of room for optimization.The coupling coordination degree of desertification control-social and economic system is in a steady fluctuation trend,rising from D value less than 0.55 in 2004 to 0.87 in 2018,in a state of coordinated development(good),and grey prediction analysis shows that D value is in a continuous rise.The coupling coordination degree of the six prefecture-level cities in Xizang and Ngari region is different in time and space,but the overall development trend is coordinated.The development index of desertification control and the socio-economic development index show the interaction of strong decoupling,strong negative decoupling and weak decoupling,and there are interaction effects of desertification control,economic development and social development at different scales.展开更多
Approximately 331 million ha, one-third of China's total land, is prone to desertification processes, leading to natural disasters and economic losses. In this study, the situation, tendency, their influences and the...Approximately 331 million ha, one-third of China's total land, is prone to desertification processes, leading to natural disasters and economic losses. In this study, the situation, tendency, their influences and their risk governance of desertification and blown sand disaster in China were examined using satellite images, field photographs, field data and a literature review. The desiccated areas in Lop Nor and the lower Heihe River fluvial plain covered about 50,000 km2 and 40,000 km2, respectively. In Ejina, about 100 species of vegetation became extinct. The rate of wind erosion in China was between 1,000 tons/km2/year and 2,000 tons/km2/year. There were 12 sand deserts and sandy lands, occupying a total of 710,000 km2. Salinized soils occurred across 99.1 million ha. The two main sand and dust storm-prone areas in China were the Tarim Basin and its surroundings, and the Alxa Plateau and its surroundings. From 1981 to 2007, the annual average frequency of sand and dust storms varied from 1 d to 37 d with a general increase from southeast to northwest. Since 1978, China has implemented a number of ecological construction projects that have reduced desertification from 1999 to 2004 and from 2005 to 2009, and the number of dust and sand storm days from 9.3 d between 1954 and 1959 to 4.4 d between 2000 and 2007. The results could improve understanding of desertification and blown sand disasters in China and provide valuable experiences for global desertification control.展开更多
The Qinghai-Tibet Plateau is one of the major sandy desertification regions of China. Based on the recent investigation on sandy desertification, this paper analyses the status such as the type, area, distribution and...The Qinghai-Tibet Plateau is one of the major sandy desertification regions of China. Based on the recent investigation on sandy desertification, this paper analyses the status such as the type, area, distribution and damage of sandy land desertification in the plateau. Through the analysis on the factors affecting sandy desertification in the region’s natural and socio-economic systems as well as the processes and their interrelations, it can be concluded that sandy desertification in the Qinghai-Tibet Plateau resulted from the combined actions of normal natural sand drift processes, natural sandy desertification processes caused by climatic changes and man-made sandy desertification caused by improper human activities. In addition, it also predicts the possible developmental trend including the increase in desertification area and the enhancement in desertification developmental degree with the exacerbation of the complex processes, and finally puts forward some strategic suggestions to combat sandy desertification in the coming years.展开更多
Serious desertification caused by human activity and climate change,in addition to water loss and soil erosion related to arsenic sandstone in the Mu Us Sandy Land,lead to severe scarcity of soil and water resources,w...Serious desertification caused by human activity and climate change,in addition to water loss and soil erosion related to arsenic sandstone in the Mu Us Sandy Land,lead to severe scarcity of soil and water resources,which causes worse local agricultural conditions accordingly.Many physical properties of arsenic sandstone is complementary with that of sand,arsenic sandstone is therefore supposed to be blended to enhance water productivity and arability of sandy land.Container experiments are carried out to study the enhancement of water holding capacity of the mixture,the blending ratio of arsenic sandstone and sand,and the proper size of the arsenic sandstone particles,respectively.The results of the experiments show that particle size of 4 cm with a ratio of 1∶2 between arsenic sandstone and sand are the proper parameters on blending.Both water content and fertility increase after blending.Water use efficiency in the mixture is 2.7 times higher than that in sand by the water release curves from experiments.Therefore,a new sand control and development model,including arsenic sandstone blending with sand,efficient water irrigation management and reasonable farming system,is put forward to control and develop sandy land so that water-saving agriculture could be developed.Demonstration of potato planting about 153.1 ha in area in the Mu Us Sandy Land in China indicates that water consumption is 3018 m3/ha in the whole growth period.It means that about 61%of irrigation water can be saved compared with water use in coarse sand without treatment.Recycle economic mode and positive feedback of sand resource-crop planting-soil resource are constructed,which changes sand into arable soil and make it possible to develop water-saving agriculture on it.The proposed model will be helpful for soil-water resources utilization and management in the Mu Us Sandy Land.展开更多
[Objective] The aim was to analyze the current status and control measures of ecological restoration in Karst rocky desertification area of Guizhou.[Method] The current status and existing problems of ecological resto...[Objective] The aim was to analyze the current status and control measures of ecological restoration in Karst rocky desertification area of Guizhou.[Method] The current status and existing problems of ecological restoration in Karst rocky desertification area of Guizhou were studied firstly,and main control measures were put forward according to existing problems.[Result] At present,Karst rocky desertification area in Guizhou has suitable ecological environment,obvious control results and rich control experience,and there exist many problems like ambiguous concept of ecological restoration,biased control emphasis,single control measure and serious water shortage due to lagging engineering construction.Control measures mainly include combining natural restoration with artificial tending to speed up ecological restoration,reinforcing the restoration and rebuilding of development and construction project to prevent the deterioration of regional ecological environment,speeding up the construction of environmental friendly energy infrastructures to decrease the damage of vegetation by human activities,increasing industrial structure adjustment and greatly developing green industry and improving the investment in technological innovation to promote the rapid development of ecological restoration.[Conclusion] The study could provide scientific references for the ecological restoration in other Karst rocky desertification area in Southwest China.展开更多
About half of the arid and semi-arid lands in the world are deserts thatcomprise various types of aeolian sand dunes deposits. In Shaanxi Province, aeolian sand dunes coverconsiderable areas of the Yulin desert and no...About half of the arid and semi-arid lands in the world are deserts thatcomprise various types of aeolian sand dunes deposits. In Shaanxi Province, aeolian sand dunes coverconsiderable areas of the Yulin desert and northern Jinbian. Sand dunes are moving in the main winddirection and converting some agricultural area to wasteland. Remote sensing of sand dunes helps inthe understanding of aeolian process and desertification. Remote sensing data combined with fieldstudies are valuable in studying sand dunes, regional aeolian depositional history. In particular,active and inactive sand dunes of the north Shaanxi Province were studied using remote sensing andgeographic information system. In this study, we describe the Landsat thematic mapper (TM) images,covering north Shaanxi Province, which were used to study the distribution, shape, size, trends,density and movement of sand dunes and their effect on desertification of cultivated lands.Estimation was made depending on soil erodibility factor (Ⅰ) and local climatic factor (C) duringthe period (June to September). The result indicates that soil erosion caused sand drift of 8.957 5,7. 03 ton for Yulin and Jinbian, respectively. The mean sand dunes movement rate were 4.37, 3.11 m,whereas, monthly sand dune advance rate were 1. 092 5, 0. 777 5m, for the two locations,respectively. The study reveals that cultivated lands extended obliquely to the direction of sanddune movement are extremely affected, while other segments that extend parallel to the direction ofthe movement are not affected. Accordingly the north Shaanxi Province was divided into areas ofdifferent classes of potential risk. Moreover, blown sands and sand movement from neighboringhighlands also affect the area of western desert.展开更多
Straw checkerboard sand barriers with a porous structure that consists of a pervious upper portion and a dense lower portion are widely used to achieve great sand control effect.Considering this,and resolving the seri...Straw checkerboard sand barriers with a porous structure that consists of a pervious upper portion and a dense lower portion are widely used to achieve great sand control effect.Considering this,and resolving the serious earth surface undercutting problem after HDPE sandbreak net checkboard barriers setting,the authors used HDPE(high-density polyethylene)materials to prepare new sandbreak materials with a similar porous structure.Through wind tunnel simulations and field sand control monitoring,we compared the sand control effect of three HDPE sandbreak nets with different porosity structure.Compared to the sandbreak net with uniform porosity structure,the three types of HDPE sandbreak nets with different porosity structure had poorer effect on reducing sand transport rates,but had longer effective protection distance before sandbreak nets at low wind velocity conditions(<12 m/s),longer effective protection distance at high wind velocity(>14 m/s)and longer effective protection distance between sandbreak nets at all experimental wind velocity conditions.Wind and sand control effect characteristics of HDPE sandbreak nets with different porosity structure provide an ideal material on semiburied checkerboard sand barriers for sand stabilization.By contrast,uniform-type sandbreak nets are used as materials on high upright sand fences for sand blocking.These HDPE sandbreak nets can be used to replace traditional sandbreak materials and have a very high potential for widespread and popular application in aeolian sand disaster control.展开更多
It is difficult to afforest in rock desertification region and is the key area for eco-environment treatment. To speed up the comprehensive treatment of rock desertification, several anti-rock desertification modes im...It is difficult to afforest in rock desertification region and is the key area for eco-environment treatment. To speed up the comprehensive treatment of rock desertification, several anti-rock desertification modes implemented in Dingtan region, located on the right bank of Huajiang Grand Valley in Beipanjiang Town, are introduced as examples. This paper first analyzes the natural and environmental conditions, the development of rock desertification in the Dingtan region, then the detail of the treatment modes, such as “Chinese wingleaf pricklyash – pig breeding – marsh gas” (Mode One), “amomum villosum – pig breeding – marsh gas” mode (Mode Two), “traditional grain and economic crop (corn, peanut) – amomum villosum or Chinese wingleaf pricklyash” (Mode Three), etc. The eco-economic effects, potential and shortcomings of the above mentioned modes are analyzed and compared. It is proved that Mode One and Mode Two are of good economic effect, but Mode Three of better ecological effect. Solutions to the shortcomings of the modes are also put forward.展开更多
In Guizhou Province, the area of rocky desertification land is 3.023 8 million hm^2, accounting for 17.16% of total area of land in the province. Rocky desertification is the most important ecological problem that res...In Guizhou Province, the area of rocky desertification land is 3.023 8 million hm^2, accounting for 17.16% of total area of land in the province. Rocky desertification is the most important ecological problem that restricts the economic and social development in Guizhou, so the primary task of ecological construction in Guizhou Province is to curb rocky desertification. How to effectively, efficiently and persistently use rocky desertification land is not only the key to the improvement of ecological environment, but also an urgent problem solved for local people's survival and anti-poverty. Due to having developed roots, growing fast, high yield of grass, strong resistance to drought, and high regeneration capacity, Pennisetum sinese Roxb has become a new method to control rocky desertification. How to use P. sinese Roxb efficiently becomes the key to the ecological control of rocky desertification by P. sinese Roxb. In this study, the ecological agriculture development model of "P. sinese Roxb-rocky desertification control-edible mushrooms" was studied, and the effect of cultivating Pleurotus eryngii with P. sinese Roxb in rocky desertification land was analyzed. Moreover, an outlook for the application of P. sinese Roxb in rocky desertification areas of Guizhou was given.展开更多
Control mode for typical karst rocky desertification in Guizhou Province,China is selected as the research object.The ecological benefit,the social and economic benefit and the popularization prospect of mode are sele...Control mode for typical karst rocky desertification in Guizhou Province,China is selected as the research object.The ecological benefit,the social and economic benefit and the popularization prospect of mode are selected as evaluation indices.Evaluation index system of control modebenefits for karst rocky desertification is established.The Dingtan mode and the Wangjiazhai-Yangchangdong small watershed control mode are se-lected as evaluation objects.Preliminary assessment on the two modes are carried out by Analytic Hierarchy Process,grading evaluation,and com-prehensive evaluation method.Result shows that comprehensive score of Dingtan mode is 3.81,which is higher than the score of Wangjiazhai-Yangchangdong small watershed control mode(3.11).In the aspects of ecological benefit and social and economic benefit,Dingtan mode(4.83and 3.258) is superior than the Wangjiazhai-Yangchangdong small watershed control mode(3.38 and 2.531).In the aspect of popularization pros-pect of mode,score of Dingtan mode(3) is lower than that of Wangjiazhai-Yangchangdong small watershed control mode(3.333).Therefore,theevaluation index system has certain science and offers reference and guidance for the karst rocky desertification control in southwest China.展开更多
In oil drilling processes,sand production in the oil layer is a common issue,generally mitigated by means of sand control screens.To prevent or reduce the risk of damage of these screens and to improve the related ser...In oil drilling processes,sand production in the oil layer is a common issue,generally mitigated by means of sand control screens.To prevent or reduce the risk of damage of these screens and to improve the related service life,it is necessary to investigate the related erosion dynamics.In this study,a screen mesh model based on the flow field similarity theory is proposed to overcome the otherwise too complex geometric structure of this type of equipment.Such model is optimized using experimental data.The predicted results are in good agreement with the measured values,and the error is less than 15%.The results also show that the simplified geometric screen model and the optimized Zhang et al.erosion model have high reliability;therefore,they could effective be used to select underground screen meshes and improve the design of production process.展开更多
Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qingha...Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qinghai Lake,the Neogene saline lake beach-bars in southwestern Qaidam Basin are studied from the perspective of sedimentary characteristics,development patterns,sand control factors,and hydrocarbon accumulation characteristics.Beach-bar sand bodies are widely developed in the Neogene saline lake basin,and they are lithologically fine sandstone and siltstone,with wavy bedding,low-angle cross bedding,and lenticular-vein bedding.In view of spatial-temporal distribution,the beach-bar sand bodies are stacked in multiple stages vertically,migratory laterally,and extensive and continuous in NW-SE trending pattern in the plane.The stacking area of the Neogene beach-bar sandstone is predicted to be 3000 km^(2).The water salinity affects the sedimentation rate and offshore distance of beach-bar sandstone,and the debris input from the source area affects the scale and enrichment of beach-bar sandstone.The ancient landform controls the morphology and stacking style of beach-bar sandstone,and the northwest monsoon driving effect controls the long-axis extension direction of beach-bar sandstone.The beach-bars have a reservoir-forming feature of“one reservoir in one sand body”,with thick beach-bar sand bodies controlling the effective reservoir distribution and oil-source faults controlling the oil/gas migration and accumulation direction.Three favorable exploration target zones in Zhahaquan,Yingdong-eastern Wunan and Huatugou areas are proposed based on the analysis of reservoir-forming elements.展开更多
First,current situation of rocky desertification control in Guangxi was surveyed via the methods of literature review,field investigation and informal discussion. The results displayed that new progress has been made ...First,current situation of rocky desertification control in Guangxi was surveyed via the methods of literature review,field investigation and informal discussion. The results displayed that new progress has been made in the study of control techniques and models for rocky desertification in Guangxi,and typical control models of " mountain-water-field-forest-road comprehensive control", " ecological agriculture planting-agricultural tourism", " three-in-one" appeared. Then,systematic analysis on the situation of rocky desertification control in Guangxi was conducted. Some problems are found: at present,the prevention and control mechanism of rocky desertification in Guangxi is not perfect,and there is no joint force among departments;there is low capital input and single source channel;the contradiction between survival and ecology is prominent,and the enthusiasm of the masses to participate is not high;there is imperfect supporting policy mechanism,and economic development and ecological protection are unbalanced. For these problems,relevant suggestions and safeguard measures are proposed from comprehensive management,governance planning,technical support and policy support. The research aims to provide theoretical foundation and scientific basis for future rocky desertification control in Guangxi.展开更多
According to the strategic goal of sustainable development,construction and management for the construction of Shendong mining area with ecological safety,the ecological restoration principle of " control protects de...According to the strategic goal of sustainable development,construction and management for the construction of Shendong mining area with ecological safety,the ecological restoration principle of " control protects development and development promotes control" for desertification prevention and control was adopted,and engineering measures,plant greening measures,and enclosure management and protection measures were taken to prevent and control desertification in the mining area based on careful detailed investigation and accurate planning and design in the early period. After 32 years,the desertification ecological landscape environment of the mining area has undergone a qualitative change,and the vegetation coverage has increased from 3%-8% to above 60% after the development. The former desertification land has become a modern green energy base that has produced 200 million tons of coal every year. The construction and management mode of an ecologically safe and modernized green coal mining area built by Shendong in the desertification region of northwestern China shows that taking appropriate comprehensive ecological restoration construction technology and management measures that integrate engineering,plants and enclosure management and protection is an effective technical and management paradigm for the construction of a modernized green large-scale coal mining area in China's arid and semi-arid regions.展开更多
To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells...To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells were selected to carry out the running test of sand control string with pre-packed screen.Meanwhile,the running simulation was performed by using the Landmark software.The results show that the sand control packer and screen can be run smoothly in the wellbore with a dogleg angle of more than 20°/30 m and keep the structure stable.Additionally,the comprehensive friction coefficient is 0.4,under which and the simulation shows that the sand control string for hydrate exploitation can be run smoothly.These findings have important guiding significance for running the completion sand control string in natural gas hydrate exploitation.展开更多
Re puted as a wonderful achievement of the world's highway construction h istory, the Taklimakan Desert highway is now facing serious sand drift encroachment problems due to its 447-km-long passage of sand sea con...Re puted as a wonderful achievement of the world's highway construction h istory, the Taklimakan Desert highway is now facing serious sand drift encroachment problems due to its 447-km-long passage of sand sea consist ing of crescent dunes, barchan chains, compound transverse dune ridges and co mplex megadunes. To solve some technical problems in the protection of the highway from sand drift encroachment, desert experts have been conductin g the theoretical and applied studies on sand movement laws; causes, severities and time-space differentiation of sand drift damages; and control ways in cluding mechanical, chemical and biological measures. In this paper the authors give an overall summary on the research contents and recent progress i n the control of sand drift damages in China and hold that the theoretica l research results and practices in the prevention of sand drift encr oachment on the cross-desert highway represent a breakthrough and has an epoch-making significance. Since the construction of protective forest along the cross-desert highway requires large amount of ground water, what will be its environmental consequence and whether it can effectiv ely halt sand drift encroachment on the highway forever are the questions to be studied urgently.展开更多
Sand production is one of the major problems in sandstone reservoirs. Different mechanical and chemical methods have been proposed to control sand production. In this paper, we propose a chemical method based on using...Sand production is one of the major problems in sandstone reservoirs. Different mechanical and chemical methods have been proposed to control sand production. In this paper, we propose a chemical method based on using polyacrylamide/chromium triacetate hydrogel to investigate sand production in a synthetic sandpack system. To this end, a series of bulk experiments including the bottle test and rheological analysis along with compression tests were conducted. Experimental results indicated that the compressive strength of the sandpack was increased as much as 30 times by injecting 0.5 pore volume of hydrogel. Also, it was found that the increases in cross-linker and polymer concentrations exhibited a positive impact on the compressive strength of the sandpack, mostly by cross-linker concentration(48 psi). Hydrogel with a higher value of cross-linker could retain its viscoelastic properties against the strain which was a maximum of 122% for 0.5 weight ratio of cross-linker/polymer. The presence of salts, in particular divalent cations, has a detrimental effect on the hydrogel stability. The maximum strain value applied on hydrogel in the presence of CaCl_2 was only about 201% as compared to 1010% in the presence of distilled water. Finally, thermogravimetric analysis and its derivative showed that the hydrogel could retain its structure up to 300 °C. The results of this study revealed the potential application of the hydrogel to control sand production.展开更多
Desertification research in arid and semi-arid regions has always been actively pursued.In China,the problem of desertification in Xinjiang has also received extensive attention.Due to its unique geography,many schola...Desertification research in arid and semi-arid regions has always been actively pursued.In China,the problem of desertification in Xinjiang has also received extensive attention.Due to its unique geography,many scholars have conducted corresponding research on the desertification status of Xinjiang.In this paper,we comprehensively reviewed desertification in Xinjiang,and compared the underlying mechanisms of desertification and the status of desertification conditions after the implementation of ecological control projects.On a larger scale,desertification in Xinjiang can be divided into soil salinization inside oases and sandy desertification on the edges of oases.Human activities are considered the main cause of desertification,but natural factors also contribute to varying degrees.Research on the mechanisms of desertification has effectively curbed the development of desertification,but unreasonable use of land resources accelerates the risk of desertification.For desertification control,there are several key points.First,desertification monitoring and the early warning of desertification expansion should be strengthened.Second,monitoring and reversing soil salinization also play an important role in the interruption of desertification process.It is very effective to control soil salinization through biological and chemical methods.Third,the management of water resources is also essential,because unreasonable utilization of water resources is one of the main reasons for the expansion of desertification in Xinjiang.Due to the unreasonable utilization of water resources,the lower reaches of the Tarim River are cut off,which leads to a series of vicious cycles,such as the deterioration of ecological environment on both sides of the river and the worsening of desertification.However,in recent years,various desertification control projects implemented in Xinjiang according to the conditions of different regions have achieved remarkable results.For future studies,research on the stability of desert-oasis transition zone is also significantly essential,because such investigations can help to assess the risk of degradation and control desertification on a relatively large scale.展开更多
基金sponsored by National Natural Science Foundation of China (Grand No.52204024,52074332)CNPC Innovation Found (Grant No.2021DQ02-1006)Fundamental Research Funds for the Central Universities (No.2-9-2023-049)。
文摘Radial well filled with phase change material has been proposed as a novel sand control method for hydrate exploitation.In order to reveal the sand control mechanism,CFD-DEM coupling method is applied to simulate the migration,settlement,and blockage processes of sand particles in the radial well.The obtained results indicate that three scenarios have been recognized for sand particles passing through sand control medium,based on the diameter ratio of sand control medium to sand particle(D_(d)):fully passing(D_(d)=8.75-22.5),partially passing and partially blocked(D_(d)=3.18-5.63),and completely blocked(D_(d)=2.18-3.21).After being captured by the sand control medium,sand particles can block pores,which increases fluid flow resistance and causes a certain pressure difference in the radial well.The pressure in the radial well should be lower than the hydrate phase equilibrium pressure during sand control design,for the purpose of promoting hydrate decomposition,and sand capture.The length of the radial well should be optimized based on the reservoir pore pressure,production pressure difference,bottom hole pressure,and the pressure gradient in the radial well.It should be noticed that the sand control medium leads to a decrease in permeability after sand particles captured.Even the permeability is reduced to several hundred millidarcy,it is still sufficient to ensure the effective flow of gas and water after hydrate decomposition.Increasing fluid velocity reduces the blocking capacity of the sand control medium,mainly because of deterioration in bridging between sand particles.
文摘As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and gas well.However,most screens only consider the influence of the internal sand retaining medium parameters in the sand control performance design while ignoring the influence of the plugging of the punching screen on the overall sand retaining performance of the screen.To explore the clogging mechanism of the punching screen,this paper established the clogging mechanism calculation model of a single punching screen sand control unit by using the computational fluid mechanics-discrete element method(CFD-DEM)combined method.According to the combined motion of particles and fluids,the influence of the internal flow state on particle motion and accumulation was analyzed.The results showed that(1)the clogging process of the punching sand control unit is divided into three stages:initial clogging,aggravation of clogging and stability of clogging.In the initial stage of blockage,coarse particles form a loose bridge structure,and blockage often occurs preferentially at the streamline gathering place below chamfering inside the sand control unit.In the stage of blockage intensification,the particle mass develops into a relatively complete sand bridge,which develops from both ends of the opening to the center of the opening.In the stable plugging stage,the sand deposits show a“fan shape”and form a“V-shaped”gully inside the punching slot element.(2)Under a certain reservoir particle-size distribution,The slit length and opening height have a large influence on the permeability and blockage rate,while the slit width size has little influence on the permeability and blockage rate.The microscopic clogging mechanism and its law of the punching screen prevention unit are proposed in this study,which has some field guidance significance for the design of punching screen and sand prevention selection.
基金supported by the Beijing Social Science Foundation Project(Grant No.18YJB011)the Ministry of Education Humanities and Social Science Research Fund for Youth Project(Grant No.20YJA790059)+2 种基金the National Social Science Foundation of China(Grant No.20FGLB022)the General Project of National Social Science Foundation of China(Grant No.19BGL052)the Innovation and Entrepreneurship Project of Beijing Forestry University(Grant No.X202110022111).
文摘Based on the general requirements of the coordinated development of"ecological livable"and"affluent life"in the rural revitalization strategy,the evaluation index system of desertification control was constructed,the interaction between desertification control and regional social economy and the internal space-time coordination mechanism were explored,and the quality of desertification control and its coordination degree with regional economic development were quantitatively analyzed.The decoupling mechanism of desertification governance society economy system were analyzed,and the high level for the government to promote desertification governance,constructing ecological economy coordinated development pattern to provide decision basis to Xizang desertification governance-social economic system interaction and coupling coordination development as the research object,introducing the coupling decoupling model to measure the coupling coordination model and system coordination and decoupling decoupling.Desertification control in Xizang shows a trend of gradual improvement,but the overall level is still not high and there is a lot of room for optimization.The coupling coordination degree of desertification control-social and economic system is in a steady fluctuation trend,rising from D value less than 0.55 in 2004 to 0.87 in 2018,in a state of coordinated development(good),and grey prediction analysis shows that D value is in a continuous rise.The coupling coordination degree of the six prefecture-level cities in Xizang and Ngari region is different in time and space,but the overall development trend is coordinated.The development index of desertification control and the socio-economic development index show the interaction of strong decoupling,strong negative decoupling and weak decoupling,and there are interaction effects of desertification control,economic development and social development at different scales.
文摘Approximately 331 million ha, one-third of China's total land, is prone to desertification processes, leading to natural disasters and economic losses. In this study, the situation, tendency, their influences and their risk governance of desertification and blown sand disaster in China were examined using satellite images, field photographs, field data and a literature review. The desiccated areas in Lop Nor and the lower Heihe River fluvial plain covered about 50,000 km2 and 40,000 km2, respectively. In Ejina, about 100 species of vegetation became extinct. The rate of wind erosion in China was between 1,000 tons/km2/year and 2,000 tons/km2/year. There were 12 sand deserts and sandy lands, occupying a total of 710,000 km2. Salinized soils occurred across 99.1 million ha. The two main sand and dust storm-prone areas in China were the Tarim Basin and its surroundings, and the Alxa Plateau and its surroundings. From 1981 to 2007, the annual average frequency of sand and dust storms varied from 1 d to 37 d with a general increase from southeast to northwest. Since 1978, China has implemented a number of ecological construction projects that have reduced desertification from 1999 to 2004 and from 2005 to 2009, and the number of dust and sand storm days from 9.3 d between 1954 and 1959 to 4.4 d between 2000 and 2007. The results could improve understanding of desertification and blown sand disasters in China and provide valuable experiences for global desertification control.
基金Underthe auspices ofthe K ey ProjectofScience and Technology B ureau ofTibetA utonom ous R egion
文摘The Qinghai-Tibet Plateau is one of the major sandy desertification regions of China. Based on the recent investigation on sandy desertification, this paper analyses the status such as the type, area, distribution and damage of sandy land desertification in the plateau. Through the analysis on the factors affecting sandy desertification in the region’s natural and socio-economic systems as well as the processes and their interrelations, it can be concluded that sandy desertification in the Qinghai-Tibet Plateau resulted from the combined actions of normal natural sand drift processes, natural sandy desertification processes caused by climatic changes and man-made sandy desertification caused by improper human activities. In addition, it also predicts the possible developmental trend including the increase in desertification area and the enhancement in desertification developmental degree with the exacerbation of the complex processes, and finally puts forward some strategic suggestions to combat sandy desertification in the coming years.
基金Under the auspices of National Natural Science Foundation of China(No.51079120)Education Department Research Program of Shaanxi Province(No.12JK0481)Water Conservancy Science and Technology Plan of Shaanxi Province(No.2012-07)
文摘Serious desertification caused by human activity and climate change,in addition to water loss and soil erosion related to arsenic sandstone in the Mu Us Sandy Land,lead to severe scarcity of soil and water resources,which causes worse local agricultural conditions accordingly.Many physical properties of arsenic sandstone is complementary with that of sand,arsenic sandstone is therefore supposed to be blended to enhance water productivity and arability of sandy land.Container experiments are carried out to study the enhancement of water holding capacity of the mixture,the blending ratio of arsenic sandstone and sand,and the proper size of the arsenic sandstone particles,respectively.The results of the experiments show that particle size of 4 cm with a ratio of 1∶2 between arsenic sandstone and sand are the proper parameters on blending.Both water content and fertility increase after blending.Water use efficiency in the mixture is 2.7 times higher than that in sand by the water release curves from experiments.Therefore,a new sand control and development model,including arsenic sandstone blending with sand,efficient water irrigation management and reasonable farming system,is put forward to control and develop sandy land so that water-saving agriculture could be developed.Demonstration of potato planting about 153.1 ha in area in the Mu Us Sandy Land in China indicates that water consumption is 3018 m3/ha in the whole growth period.It means that about 61%of irrigation water can be saved compared with water use in coarse sand without treatment.Recycle economic mode and positive feedback of sand resource-crop planting-soil resource are constructed,which changes sand into arable soil and make it possible to develop water-saving agriculture on it.The proposed model will be helpful for soil-water resources utilization and management in the Mu Us Sandy Land.
文摘[Objective] The aim was to analyze the current status and control measures of ecological restoration in Karst rocky desertification area of Guizhou.[Method] The current status and existing problems of ecological restoration in Karst rocky desertification area of Guizhou were studied firstly,and main control measures were put forward according to existing problems.[Result] At present,Karst rocky desertification area in Guizhou has suitable ecological environment,obvious control results and rich control experience,and there exist many problems like ambiguous concept of ecological restoration,biased control emphasis,single control measure and serious water shortage due to lagging engineering construction.Control measures mainly include combining natural restoration with artificial tending to speed up ecological restoration,reinforcing the restoration and rebuilding of development and construction project to prevent the deterioration of regional ecological environment,speeding up the construction of environmental friendly energy infrastructures to decrease the damage of vegetation by human activities,increasing industrial structure adjustment and greatly developing green industry and improving the investment in technological innovation to promote the rapid development of ecological restoration.[Conclusion] The study could provide scientific references for the ecological restoration in other Karst rocky desertification area in Southwest China.
文摘About half of the arid and semi-arid lands in the world are deserts thatcomprise various types of aeolian sand dunes deposits. In Shaanxi Province, aeolian sand dunes coverconsiderable areas of the Yulin desert and northern Jinbian. Sand dunes are moving in the main winddirection and converting some agricultural area to wasteland. Remote sensing of sand dunes helps inthe understanding of aeolian process and desertification. Remote sensing data combined with fieldstudies are valuable in studying sand dunes, regional aeolian depositional history. In particular,active and inactive sand dunes of the north Shaanxi Province were studied using remote sensing andgeographic information system. In this study, we describe the Landsat thematic mapper (TM) images,covering north Shaanxi Province, which were used to study the distribution, shape, size, trends,density and movement of sand dunes and their effect on desertification of cultivated lands.Estimation was made depending on soil erodibility factor (Ⅰ) and local climatic factor (C) duringthe period (June to September). The result indicates that soil erosion caused sand drift of 8.957 5,7. 03 ton for Yulin and Jinbian, respectively. The mean sand dunes movement rate were 4.37, 3.11 m,whereas, monthly sand dune advance rate were 1. 092 5, 0. 777 5m, for the two locations,respectively. The study reveals that cultivated lands extended obliquely to the direction of sanddune movement are extremely affected, while other segments that extend parallel to the direction ofthe movement are not affected. Accordingly the north Shaanxi Province was divided into areas ofdifferent classes of potential risk. Moreover, blown sands and sand movement from neighboringhighlands also affect the area of western desert.
基金fund by Strategic Priority Research Program of the Chinese Academy of Sciences(XD23060201)the National Natural Science Foundation of China(41730644,42171016,)。
文摘Straw checkerboard sand barriers with a porous structure that consists of a pervious upper portion and a dense lower portion are widely used to achieve great sand control effect.Considering this,and resolving the serious earth surface undercutting problem after HDPE sandbreak net checkboard barriers setting,the authors used HDPE(high-density polyethylene)materials to prepare new sandbreak materials with a similar porous structure.Through wind tunnel simulations and field sand control monitoring,we compared the sand control effect of three HDPE sandbreak nets with different porosity structure.Compared to the sandbreak net with uniform porosity structure,the three types of HDPE sandbreak nets with different porosity structure had poorer effect on reducing sand transport rates,but had longer effective protection distance before sandbreak nets at low wind velocity conditions(<12 m/s),longer effective protection distance at high wind velocity(>14 m/s)and longer effective protection distance between sandbreak nets at all experimental wind velocity conditions.Wind and sand control effect characteristics of HDPE sandbreak nets with different porosity structure provide an ideal material on semiburied checkerboard sand barriers for sand stabilization.By contrast,uniform-type sandbreak nets are used as materials on high upright sand fences for sand blocking.These HDPE sandbreak nets can be used to replace traditional sandbreak materials and have a very high potential for widespread and popular application in aeolian sand disaster control.
基金This work is supported by the National Natural Science Foundation of China (Grant No.40261002/ 40561006).
文摘It is difficult to afforest in rock desertification region and is the key area for eco-environment treatment. To speed up the comprehensive treatment of rock desertification, several anti-rock desertification modes implemented in Dingtan region, located on the right bank of Huajiang Grand Valley in Beipanjiang Town, are introduced as examples. This paper first analyzes the natural and environmental conditions, the development of rock desertification in the Dingtan region, then the detail of the treatment modes, such as “Chinese wingleaf pricklyash – pig breeding – marsh gas” (Mode One), “amomum villosum – pig breeding – marsh gas” mode (Mode Two), “traditional grain and economic crop (corn, peanut) – amomum villosum or Chinese wingleaf pricklyash” (Mode Three), etc. The eco-economic effects, potential and shortcomings of the above mentioned modes are analyzed and compared. It is proved that Mode One and Mode Two are of good economic effect, but Mode Three of better ecological effect. Solutions to the shortcomings of the modes are also put forward.
基金Supported by Reform Transformation Project of Guizhou Province(QKHT Z[2013]4006)Science and Technology Planning Project of Guizhou Province(QKHN G[2014]4002,QKH NY[2014]3063)
文摘In Guizhou Province, the area of rocky desertification land is 3.023 8 million hm^2, accounting for 17.16% of total area of land in the province. Rocky desertification is the most important ecological problem that restricts the economic and social development in Guizhou, so the primary task of ecological construction in Guizhou Province is to curb rocky desertification. How to effectively, efficiently and persistently use rocky desertification land is not only the key to the improvement of ecological environment, but also an urgent problem solved for local people's survival and anti-poverty. Due to having developed roots, growing fast, high yield of grass, strong resistance to drought, and high regeneration capacity, Pennisetum sinese Roxb has become a new method to control rocky desertification. How to use P. sinese Roxb efficiently becomes the key to the ecological control of rocky desertification by P. sinese Roxb. In this study, the ecological agriculture development model of "P. sinese Roxb-rocky desertification control-edible mushrooms" was studied, and the effect of cultivating Pleurotus eryngii with P. sinese Roxb in rocky desertification land was analyzed. Moreover, an outlook for the application of P. sinese Roxb in rocky desertification areas of Guizhou was given.
基金Supported by the Special Project for High-level Talents of Guizhou Province (TZJF-2008.No.22)
文摘Control mode for typical karst rocky desertification in Guizhou Province,China is selected as the research object.The ecological benefit,the social and economic benefit and the popularization prospect of mode are selected as evaluation indices.Evaluation index system of control modebenefits for karst rocky desertification is established.The Dingtan mode and the Wangjiazhai-Yangchangdong small watershed control mode are se-lected as evaluation objects.Preliminary assessment on the two modes are carried out by Analytic Hierarchy Process,grading evaluation,and com-prehensive evaluation method.Result shows that comprehensive score of Dingtan mode is 3.81,which is higher than the score of Wangjiazhai-Yangchangdong small watershed control mode(3.11).In the aspects of ecological benefit and social and economic benefit,Dingtan mode(4.83and 3.258) is superior than the Wangjiazhai-Yangchangdong small watershed control mode(3.38 and 2.531).In the aspect of popularization pros-pect of mode,score of Dingtan mode(3) is lower than that of Wangjiazhai-Yangchangdong small watershed control mode(3.333).Therefore,theevaluation index system has certain science and offers reference and guidance for the karst rocky desertification control in southwest China.
基金the Foundation of the National Natural Science Foundation of China(No.51974033)Educational Commission of Hubei Province of China(Q20191310,D20171305).
文摘In oil drilling processes,sand production in the oil layer is a common issue,generally mitigated by means of sand control screens.To prevent or reduce the risk of damage of these screens and to improve the related service life,it is necessary to investigate the related erosion dynamics.In this study,a screen mesh model based on the flow field similarity theory is proposed to overcome the otherwise too complex geometric structure of this type of equipment.Such model is optimized using experimental data.The predicted results are in good agreement with the measured values,and the error is less than 15%.The results also show that the simplified geometric screen model and the optimized Zhang et al.erosion model have high reliability;therefore,they could effective be used to select underground screen meshes and improve the design of production process.
基金Supported by the PetroChina Science and Technology Project (2021DJ0402,2021DJ0202)。
文摘Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qinghai Lake,the Neogene saline lake beach-bars in southwestern Qaidam Basin are studied from the perspective of sedimentary characteristics,development patterns,sand control factors,and hydrocarbon accumulation characteristics.Beach-bar sand bodies are widely developed in the Neogene saline lake basin,and they are lithologically fine sandstone and siltstone,with wavy bedding,low-angle cross bedding,and lenticular-vein bedding.In view of spatial-temporal distribution,the beach-bar sand bodies are stacked in multiple stages vertically,migratory laterally,and extensive and continuous in NW-SE trending pattern in the plane.The stacking area of the Neogene beach-bar sandstone is predicted to be 3000 km^(2).The water salinity affects the sedimentation rate and offshore distance of beach-bar sandstone,and the debris input from the source area affects the scale and enrichment of beach-bar sandstone.The ancient landform controls the morphology and stacking style of beach-bar sandstone,and the northwest monsoon driving effect controls the long-axis extension direction of beach-bar sandstone.The beach-bars have a reservoir-forming feature of“one reservoir in one sand body”,with thick beach-bar sand bodies controlling the effective reservoir distribution and oil-source faults controlling the oil/gas migration and accumulation direction.Three favorable exploration target zones in Zhahaquan,Yingdong-eastern Wunan and Huatugou areas are proposed based on the analysis of reservoir-forming elements.
基金Supported by the Project of"Investigation on the Current Situation of Rocky Desertification Control in Guangxi"(GNH[2017]B-03)。
文摘First,current situation of rocky desertification control in Guangxi was surveyed via the methods of literature review,field investigation and informal discussion. The results displayed that new progress has been made in the study of control techniques and models for rocky desertification in Guangxi,and typical control models of " mountain-water-field-forest-road comprehensive control", " ecological agriculture planting-agricultural tourism", " three-in-one" appeared. Then,systematic analysis on the situation of rocky desertification control in Guangxi was conducted. Some problems are found: at present,the prevention and control mechanism of rocky desertification in Guangxi is not perfect,and there is no joint force among departments;there is low capital input and single source channel;the contradiction between survival and ecology is prominent,and the enthusiasm of the masses to participate is not high;there is imperfect supporting policy mechanism,and economic development and ecological protection are unbalanced. For these problems,relevant suggestions and safeguard measures are proposed from comprehensive management,governance planning,technical support and policy support. The research aims to provide theoretical foundation and scientific basis for future rocky desertification control in Guangxi.
文摘According to the strategic goal of sustainable development,construction and management for the construction of Shendong mining area with ecological safety,the ecological restoration principle of " control protects development and development promotes control" for desertification prevention and control was adopted,and engineering measures,plant greening measures,and enclosure management and protection measures were taken to prevent and control desertification in the mining area based on careful detailed investigation and accurate planning and design in the early period. After 32 years,the desertification ecological landscape environment of the mining area has undergone a qualitative change,and the vegetation coverage has increased from 3%-8% to above 60% after the development. The former desertification land has become a modern green energy base that has produced 200 million tons of coal every year. The construction and management mode of an ecologically safe and modernized green coal mining area built by Shendong in the desertification region of northwestern China shows that taking appropriate comprehensive ecological restoration construction technology and management measures that integrate engineering,plants and enclosure management and protection is an effective technical and management paradigm for the construction of a modernized green large-scale coal mining area in China's arid and semi-arid regions.
基金supported jointly by one of the major projects of Basic and Applied Basic Research in Guangdong Province“Key Basic Theory Research for Natural Gas Hydrate Trial Production in Shenhu Pilot Test Area”(2020B0301030003)the project from Southern Marine Science&Engineering Guangdong Laboratory Guangzhou City“Research on New Closed Circulation Drilling Technology without Riser”(GML2019ZD0501)the special project for hydrate from China Geological Survey“Trial Production Implementation for Natural Gas Hydrate in Shenhu Pilot Test Area”(DD20190226)。
文摘To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells were selected to carry out the running test of sand control string with pre-packed screen.Meanwhile,the running simulation was performed by using the Landmark software.The results show that the sand control packer and screen can be run smoothly in the wellbore with a dogleg angle of more than 20°/30 m and keep the structure stable.Additionally,the comprehensive friction coefficient is 0.4,under which and the simulation shows that the sand control string for hydrate exploitation can be run smoothly.These findings have important guiding significance for running the completion sand control string in natural gas hydrate exploitation.
基金The National Key Project for Basic Research, No.G2000048705 Knowledge Innovation Project of the Cold and Arid Regions Environmental and Engineering Research Institute, CAS, No.CACX210093
文摘Re puted as a wonderful achievement of the world's highway construction h istory, the Taklimakan Desert highway is now facing serious sand drift encroachment problems due to its 447-km-long passage of sand sea consist ing of crescent dunes, barchan chains, compound transverse dune ridges and co mplex megadunes. To solve some technical problems in the protection of the highway from sand drift encroachment, desert experts have been conductin g the theoretical and applied studies on sand movement laws; causes, severities and time-space differentiation of sand drift damages; and control ways in cluding mechanical, chemical and biological measures. In this paper the authors give an overall summary on the research contents and recent progress i n the control of sand drift damages in China and hold that the theoretica l research results and practices in the prevention of sand drift encr oachment on the cross-desert highway represent a breakthrough and has an epoch-making significance. Since the construction of protective forest along the cross-desert highway requires large amount of ground water, what will be its environmental consequence and whether it can effectiv ely halt sand drift encroachment on the highway forever are the questions to be studied urgently.
基金support of the Iran National Science Foundation(INSF)with Project No.of 95849122
文摘Sand production is one of the major problems in sandstone reservoirs. Different mechanical and chemical methods have been proposed to control sand production. In this paper, we propose a chemical method based on using polyacrylamide/chromium triacetate hydrogel to investigate sand production in a synthetic sandpack system. To this end, a series of bulk experiments including the bottle test and rheological analysis along with compression tests were conducted. Experimental results indicated that the compressive strength of the sandpack was increased as much as 30 times by injecting 0.5 pore volume of hydrogel. Also, it was found that the increases in cross-linker and polymer concentrations exhibited a positive impact on the compressive strength of the sandpack, mostly by cross-linker concentration(48 psi). Hydrogel with a higher value of cross-linker could retain its viscoelastic properties against the strain which was a maximum of 122% for 0.5 weight ratio of cross-linker/polymer. The presence of salts, in particular divalent cations, has a detrimental effect on the hydrogel stability. The maximum strain value applied on hydrogel in the presence of CaCl_2 was only about 201% as compared to 1010% in the presence of distilled water. Finally, thermogravimetric analysis and its derivative showed that the hydrogel could retain its structure up to 300 °C. The results of this study revealed the potential application of the hydrogel to control sand production.
基金the National Natural Science Foundation of China(41971017,41861144020)the Double Track Implementation Mechanism for Combating Desertification in China and the Experiences-Sharing in the Affected Countries along the Belt and Road Region(ANSO-SBA-2021-06).
文摘Desertification research in arid and semi-arid regions has always been actively pursued.In China,the problem of desertification in Xinjiang has also received extensive attention.Due to its unique geography,many scholars have conducted corresponding research on the desertification status of Xinjiang.In this paper,we comprehensively reviewed desertification in Xinjiang,and compared the underlying mechanisms of desertification and the status of desertification conditions after the implementation of ecological control projects.On a larger scale,desertification in Xinjiang can be divided into soil salinization inside oases and sandy desertification on the edges of oases.Human activities are considered the main cause of desertification,but natural factors also contribute to varying degrees.Research on the mechanisms of desertification has effectively curbed the development of desertification,but unreasonable use of land resources accelerates the risk of desertification.For desertification control,there are several key points.First,desertification monitoring and the early warning of desertification expansion should be strengthened.Second,monitoring and reversing soil salinization also play an important role in the interruption of desertification process.It is very effective to control soil salinization through biological and chemical methods.Third,the management of water resources is also essential,because unreasonable utilization of water resources is one of the main reasons for the expansion of desertification in Xinjiang.Due to the unreasonable utilization of water resources,the lower reaches of the Tarim River are cut off,which leads to a series of vicious cycles,such as the deterioration of ecological environment on both sides of the river and the worsening of desertification.However,in recent years,various desertification control projects implemented in Xinjiang according to the conditions of different regions have achieved remarkable results.For future studies,research on the stability of desert-oasis transition zone is also significantly essential,because such investigations can help to assess the risk of degradation and control desertification on a relatively large scale.