This work sets out to simulate landscape model of Mu Us Desert in Inner Mongolia Autonomous Region of China at different spatial resolution using remote sensing images and distinguished landscape heterogeneity among d...This work sets out to simulate landscape model of Mu Us Desert in Inner Mongolia Autonomous Region of China at different spatial resolution using remote sensing images and distinguished landscape heterogeneity among different spatial resolutions. Landscape models were created from classification image of SPOT satellite data with 20m resolution and NOAA data with 1 km resolution. This study created landscape models of different scales by resampling the SPOT classified image using majority rule. The pixel resolution was increased from the finest scale of 20m by 20m up to 1000m by 1000m that was the coarsest spatial resolution. The Shannon diversity index was used to compare landscape models between different scales. At the finer scale the verify small patches such as deciduous forest, shrub and reedswamp with high vegetation coverage set on matrices with low vegetation cover (moving sand dune and sparse grassland) were verified. Broadening of scale resulted to the loss of small patches and at 1000m resolution, matrix classes were dominant. At 1km resolution of NOAA data, the matrix classes which greatly related to the topography of Mu Us Desert were detected. Diversity index decreased during scale broadening and the difference between SPOT 1km scale model and AVHRR data was not significant. The results showed that SPOT 20m model is good for the use of ecotone oriented revegetation planning, and NOAA 1km model is good for the seasonal and annual monitoring of each landscape unit, and revegetation planning at the regional level.展开更多
Precipitation infiltration serves as a significant source of groundwater in the Badain Jaran Desert.To investigate variations in precipitation infiltration within the desert,this study collected data on moisture conte...Precipitation infiltration serves as a significant source of groundwater in the Badain Jaran Desert.To investigate variations in precipitation infiltration within the desert,this study collected data on moisture content and temperature from the vadose zone through in-situ field monitoring.Utilizing these data,a numerical model is employed to explore the mechanism of groundwater recharge via precipitation.The results are as follows:(1)Moisture content and temperature in the shallow vadose zone exhibit significant seasonal variations,with moisture content diminishing with increasing depth;(2)Groundwater recharge via precipitation infiltration initially increases and then decreases with groundwater level depth(GWD).Peak groundwater recharge via precipitation occurs at a GWD of 0.75 m,decreasing to merely 0.012 cm at GWDs exceeding 2 m;(3)Groundwater is no longer susceptible to phreatic water evaporation when the GWD reaches approximately 3.7 m.Therefore,GWD plays a crucial role in governing groundwater recharge via precipitation in the Badain Jaran Desert.展开更多
Deserts are one of the major landforms on the Earth. While deserts occupy about one-fifth of Earth’s land surface, they have been studied to a much lesser extent. All over the world, desert landforms are expanding ev...Deserts are one of the major landforms on the Earth. While deserts occupy about one-fifth of Earth’s land surface, they have been studied to a much lesser extent. All over the world, desert landforms are expanding ever rapidly and more and more human settlements are finding place in desert regions for habitation. Thus, quantifying and monitoring dunes becomes more relevant from a managerial perspective. Analyzing desert areas using satellite imagery is a challenging task due to weak textural differences and nearly homogeneous spectral responses in most parts of the terrain. In this paper, a post-clustering methodology for change detection of desert sand dunes is proposed. Features based on Radon spectrum are used to cluster dunes of various orientations. These clustered boundaries are used to detect if there are any changes occurring in the dune regions. In the experiments, remote sensing data covering various dune regions of the world are observed for possible changes in dune orientations. In all the cases, it is seen that there are no major changes in desert dune orientations since three decades.展开更多
文摘This work sets out to simulate landscape model of Mu Us Desert in Inner Mongolia Autonomous Region of China at different spatial resolution using remote sensing images and distinguished landscape heterogeneity among different spatial resolutions. Landscape models were created from classification image of SPOT satellite data with 20m resolution and NOAA data with 1 km resolution. This study created landscape models of different scales by resampling the SPOT classified image using majority rule. The pixel resolution was increased from the finest scale of 20m by 20m up to 1000m by 1000m that was the coarsest spatial resolution. The Shannon diversity index was used to compare landscape models between different scales. At the finer scale the verify small patches such as deciduous forest, shrub and reedswamp with high vegetation coverage set on matrices with low vegetation cover (moving sand dune and sparse grassland) were verified. Broadening of scale resulted to the loss of small patches and at 1000m resolution, matrix classes were dominant. At 1km resolution of NOAA data, the matrix classes which greatly related to the topography of Mu Us Desert were detected. Diversity index decreased during scale broadening and the difference between SPOT 1km scale model and AVHRR data was not significant. The results showed that SPOT 20m model is good for the use of ecotone oriented revegetation planning, and NOAA 1km model is good for the seasonal and annual monitoring of each landscape unit, and revegetation planning at the regional level.
基金funded by China Geological Survey Program(121201106000150093).
文摘Precipitation infiltration serves as a significant source of groundwater in the Badain Jaran Desert.To investigate variations in precipitation infiltration within the desert,this study collected data on moisture content and temperature from the vadose zone through in-situ field monitoring.Utilizing these data,a numerical model is employed to explore the mechanism of groundwater recharge via precipitation.The results are as follows:(1)Moisture content and temperature in the shallow vadose zone exhibit significant seasonal variations,with moisture content diminishing with increasing depth;(2)Groundwater recharge via precipitation infiltration initially increases and then decreases with groundwater level depth(GWD).Peak groundwater recharge via precipitation occurs at a GWD of 0.75 m,decreasing to merely 0.012 cm at GWDs exceeding 2 m;(3)Groundwater is no longer susceptible to phreatic water evaporation when the GWD reaches approximately 3.7 m.Therefore,GWD plays a crucial role in governing groundwater recharge via precipitation in the Badain Jaran Desert.
文摘Deserts are one of the major landforms on the Earth. While deserts occupy about one-fifth of Earth’s land surface, they have been studied to a much lesser extent. All over the world, desert landforms are expanding ever rapidly and more and more human settlements are finding place in desert regions for habitation. Thus, quantifying and monitoring dunes becomes more relevant from a managerial perspective. Analyzing desert areas using satellite imagery is a challenging task due to weak textural differences and nearly homogeneous spectral responses in most parts of the terrain. In this paper, a post-clustering methodology for change detection of desert sand dunes is proposed. Features based on Radon spectrum are used to cluster dunes of various orientations. These clustered boundaries are used to detect if there are any changes occurring in the dune regions. In the experiments, remote sensing data covering various dune regions of the world are observed for possible changes in dune orientations. In all the cases, it is seen that there are no major changes in desert dune orientations since three decades.