期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improvement of conventional liquid desiccant dehumidification technology
1
作者 王俐 连之伟 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期212-216,共5页
A new system of liquid desiccant dehumidification,called ultrasound atomization dehumidification system,is proposed.In this system,a packed bed is replaced by ultrasound atomization technology,so high resistance and l... A new system of liquid desiccant dehumidification,called ultrasound atomization dehumidification system,is proposed.In this system,a packed bed is replaced by ultrasound atomization technology,so high resistance and liquid desiccant consumption caused by the packed bed are avoided.A mathematical model is established to predict the efficiency and the liquid consumption of the dehumidification process under ideal conditions.Through comparing the simulation results with the experimental data of a conventional packed-bed dehumidifier,it is found that the liquid desiccant consumption of the conventional packed-bed dehumidifier is much greater than that under ideal conditions.In the proposed system,the dehumidification process occurs on the surfaces of the micron liquid desiccant droplets produced with the irradiation of ultrasound,so there is a greater contact area created with the same quantity of the liquid desiccant;moreover,the power consumption is lower because there are no nozzles and no solution pump.It can be seen that this new system is closer to ideal conditions when compared with the conventional liquid desiccant dehumidification system. 展开更多
关键词 packed bed liquid desiccant dehumidification atomization dehumidification ULTRASOUND SIMULATION
下载PDF
Solid Desiccant Dehumidification Techniques Inspired from Natural Electroosmosis Phenomena 被引量:4
2
作者 B. Li Y. Y. Yan 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第1期90-97,共8页
Electroosmosis has been shown to be an effective means of different applications in various fields such as Micro-Electro-Mechanical systems (MEMS) and biomimetics applications. This paper aims to prove the concept t... Electroosmosis has been shown to be an effective means of different applications in various fields such as Micro-Electro-Mechanical systems (MEMS) and biomimetics applications. This paper aims to prove the concept that the electroosmosis phenomena can also be cooperated into larger scale applications in the building service industry like dehumidification or damping proof. The electroosmotic flow inside a porous medium is validated experimentally to further understand the dehumidification mechanism of combined techniques. An experimental test validates that the condensation from the porous medium can be obtained by electroosmotic force generated by external electric field, especially for specific desiccant powders like zeolite and diatomaceous earth. With a range of volts from 5 V to 20 V applying between the testing plates, the maximum flow rate through the cross section in the testing plate achieved during the peak period is 1.35 laL'min 1. These promising phenomena can act as an alternative way for energy choice in dehumidification industrial field. Further researches on new regeneration methods for solid desiccant dehumidification are required to make the system simple, energy-saving and suitable for small air conditioning units. 展开更多
关键词 biomimetics electroosmotic flow solid desiccant dehumidification
下载PDF
The “All in One”Smart Solar Cooling System
3
作者 Esam Elsarrag 《Journal of Energy and Power Engineering》 2018年第2期66-73,共8页
The need for moving away from traditional energy sources and to find alternate energy sources is undoubtedly one of the primary objectives for a sustainable progress to humankind. The design and construction of buildi... The need for moving away from traditional energy sources and to find alternate energy sources is undoubtedly one of the primary objectives for a sustainable progress to humankind. The design and construction of buildings in hot-humid climates requires high energy consumption typically for air conditioning due to higher thermal loads. In the Gulf Region, there is a rising concern on the current rate of energy consumption due to air conditioning, i.e. two thirds of domestic electrical loads. Considering the wider impacts of carbon emissions on our climate, and the need to reduce these emissions, effective energy efficiency solutions are necessary in order to achieve the overall goal of reducing carbon emissions. This paper presents the performance of the “All in One” fully integrated solar desiccant air conditioning system. The superefficient air conditioning system can provide 1,000 to 2,000 litre/s treated fresh air at supply temperature of 16 °C with 60% reduction in energy consumption compared to conventional systems. The system is locally manufactured and installed. 展开更多
关键词 Solar cooling desiccant dehumidification absorption chillers.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部