The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite numb...The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite number of cases,this relationship is difficult to be revealed for complex irregular distributions,preventing design of such material structures to meet certain mechanical requirements.The noticeable developments of artificial intelligence(AI)algorithms in material design enables to detect the hidden structure-mechanics correlations which is essential for designing composite of complex structures.It is intriguing how these tools can assist composite design.Here,we focus on the rapid generation of bicontinuous composite structures together with the stress distribution in loading.We find that generative AI,enabled through fine-tuned Low Rank Adaptation models,can be trained with a few inputs to generate both synthetic composite structures and the corresponding von Mises stress distribution.The results show that this technique is convenient in generating massive composites designs with useful mechanical information that dictate stiffness,fracture and robustness of the material with one model,and such has to be done by several different experimental or simulation tests.This research offers valuable insights for the improvement of composite design with the goal of expanding the design space and automatic screening of composite designs for improved mechanical functions.展开更多
Polylactic acid(PLA)is a potential polymer material used as a substitute for traditional plastics,and the accurate molecular weight distribution range of PLA is strictly required in practical applications.Therefore,ex...Polylactic acid(PLA)is a potential polymer material used as a substitute for traditional plastics,and the accurate molecular weight distribution range of PLA is strictly required in practical applications.Therefore,exploring the relationship between synthetic conditions and PLA molecular weight is crucially important.In this work,direct polycondensation combined with overlay sampling uniform design(OSUD)was applied to synthesize the low molecular weight PLA.Then a multiple regression model and two artificial neural network models on PLA molecular weight versus reaction temperature,reaction time,and catalyst dosage were developed for PLA molecular weight prediction.The characterization results indicated that the low molecular weight PLA was efficiently synthesized under this method.Meanwhile,the experimental dataset acquired from OSUD successfully established three predictive models for PLA molecular weight.Among them,both artificial neural network models had significantly better predictive performance than the regression model.Notably,the radial basis function neural network model had the best predictive accuracy with only 11.9%of mean relative error on the validation dataset,which improved by 67.7%compared with the traditional multiple regression model.This work successfully predicted PLA molecular weight in a direct polycondensation process using artificial neural network models combined with OSUD,which provided guidance for the future implementation of molecular weight-controlled polymer's synthesis.展开更多
This paper conducts a comprehensive review of existing research on Privacy by Design (PbD) and behavioral economics, explores the intersection of Privacy by Design (PbD) and behavioral economics, and how designers can...This paper conducts a comprehensive review of existing research on Privacy by Design (PbD) and behavioral economics, explores the intersection of Privacy by Design (PbD) and behavioral economics, and how designers can leverage “nudges” to encourage users towards privacy-friendly choices. We analyze the limitations of rational choice in the context of privacy decision-making and identify key opportunities for integrating behavioral economics into PbD. We propose a user-centered design framework for integrating behavioral economics into PbD, which includes strategies for simplifying complex choices, making privacy visible, providing feedback and control, and testing and iterating. Our analysis highlights the need for a more nuanced understanding of user behavior and decision-making in the context of privacy, and demonstrates the potential of behavioral economics to inform the design of more effective PbD solutions.展开更多
Bridge engineering is highly specialized and has spatial characteristics,which puts forward higher requirements for design work.The advancement of information technology has provided ample tools to facilitate bridge d...Bridge engineering is highly specialized and has spatial characteristics,which puts forward higher requirements for design work.The advancement of information technology has provided ample tools to facilitate bridge design work,with building information modeling(BIM)technology being one of them.BIM technology ensures the efficiency and quality of the forward design of bridges,while also reducing construction costs.This article starts with defining the concept of BIM technology,followed by a discussion on its advantages in bridge design and application process,which serves as a reference for other bridge designers.展开更多
The aim of the article is to explore the influence of the water landscape design of a rehabilitation garden for patients with mental disorders on the recovery effect of patients,intending to provide a better rehabilit...The aim of the article is to explore the influence of the water landscape design of a rehabilitation garden for patients with mental disorders on the recovery effect of patients,intending to provide a better rehabilitation environment for patients with mental disorders.Based on literature research,this article reviews three aspects of evidence-based design theory,the concept of water landscape in rehabilitation gardens,and the types of water features in rehabilitation gardens.The results show that well-designed water features can significantly improve patients’psychological state and reduce anxiety and stress,and that water landscape design in rehabilitation gardens is an effective rehabilitation tool that can facilitate the recovery process of patients with mental disorders.Future designs should take into full consideration patients’needs and preferences,as well as best practices in waterscape design,to maximize its positive impact on patients’recovery.展开更多
As an important part of urban construction,elderly-friendly construction is crucial to the formation of an elderly-friendly society,which has been widely recognized internationally.Especially after the COVID-19 pandem...As an important part of urban construction,elderly-friendly construction is crucial to the formation of an elderly-friendly society,which has been widely recognized internationally.Especially after the COVID-19 pandemic,various organizations around the world have called for changes in public space and urban building planning,with an emphasis on the accessibility of green spaces.This underscores the complexity and difficulty of integrating vulnerable groups of the elderly into cities and using infrastructure and public space.展开更多
This research establishes a strategic framework for developing a salt culture-themed agricultural garden in Jintan,Jiangsu to boost rural vibrancy and cultural tourism while honoring local salt heritage.It employs the...This research establishes a strategic framework for developing a salt culture-themed agricultural garden in Jintan,Jiangsu to boost rural vibrancy and cultural tourism while honoring local salt heritage.It employs the Analytic Hierarchy Process(AHP)for a data-driven and structured approach to evaluate the sustainability and cultural significance of agricultural initiatives.This framework ensures a balanced blend of agriculture,culture,and tourism to foster a sustainable and culturally rich experience.The study highlights the value of structured methodologies in planning culturally impactful agricultural projects.展开更多
This research takes China-aided construction projects in Asia since the Belt and Road Initiative as examples to explore the applicability of Chinese architectural design standards in other Asian countries.So far,the s...This research takes China-aided construction projects in Asia since the Belt and Road Initiative as examples to explore the applicability of Chinese architectural design standards in other Asian countries.So far,the standards demonstrated the highest applicability in South Asia is the best followed by Southeast Asia.Chinese architectural design standards for educational buildings showed the highest applicability,followed by office,medical,and sports buildings.This study puts forward some strategies to improve the applicability of Chinese architectural design standards.These strategies include integrating regionalism and local cultural traditions,optimizing energy efficiency,and aligning designs with local usage habits.This study serves as a reference for similar projects in the future.展开更多
With the progress of science and technology and the acceleration of industrialization,the modern industrial park is an important carrier of industrial development.The importance of its standard plant design has become...With the progress of science and technology and the acceleration of industrialization,the modern industrial park is an important carrier of industrial development.The importance of its standard plant design has become increasingly prominent.With the development of new quality productive forces as the background,this research deeply discusses the key points of standard plant design in modern industrial parks.This paper uses literature review and case analysis to systematically analyze the important role of standard plant design in developing new quality productive forces in modern industrial parks and puts forward suggestions for optimizing design.It is found that the rationality,intelligence,and environmental protection of plant design are the key factors affecting the development of new quality productive forces.The paper summarizes the core points of modern industrial park standard plant design to provide a reference for the future development of related industries.展开更多
In order to develop a generic framework capable of designing novel amorphous alloys with selected target properties,a predictor−corrector inverse design scheme(PCIDS)consisting of a predictor module and a corrector mo...In order to develop a generic framework capable of designing novel amorphous alloys with selected target properties,a predictor−corrector inverse design scheme(PCIDS)consisting of a predictor module and a corrector module was presented.A high-precision forward prediction model based on deep neural networks was developed to implement these two parts.Of utmost importance,domain knowledge-guided inverse design networks(DKIDNs)and regular inverse design networks(RIDNs)were also developed.The forward prediction model possesses a coefficient of determination(R^(2))of 0.990 for the shear modulus and 0.986 for the bulk modulus on the testing set.Furthermore,the DKIDNs model exhibits superior performance compared to the RIDNs model.It is finally demonstrated that PCIDS can efficiently predict amorphous alloy compositions with the required target properties.展开更多
This paper explains how the optimized classrooms were selected and the results that were achieved by the optimizations carried out and finalized.The context of the research is the city of Concepción,in Chile.Virt...This paper explains how the optimized classrooms were selected and the results that were achieved by the optimizations carried out and finalized.The context of the research is the city of Concepción,in Chile.Virtual models of classrooms were evaluated using the Radiance software.We used a methodology that allowed us to determine the luminous conditions under different types of skies,seasons of the year and times of the day.The evaluation of the typologies was performed based on three defined criteria,in order to achieve the stated design objectives.We defined the optimal solutions for each orientation and,finally,we stated design recommendations for daylit classrooms to ensure the visual comfort of the students.These recommendations link all that found in the initial analysis with that found in the optimization stage.展开更多
Infrared optoelectronic sensing is the core of many critical applications such as night vision,health and medication,military,space exploration,etc.Further including mechanical flexibility as a new dimension enables n...Infrared optoelectronic sensing is the core of many critical applications such as night vision,health and medication,military,space exploration,etc.Further including mechanical flexibility as a new dimension enables novel features of adaptability and conformability,promising for developing next-generation optoelectronic sensory applications toward reduced size,weight,price,power consumption,and enhanced performance(SWaP^(3)).However,in this emerging research frontier,challenges persist in simultaneously achieving high infrared response and good mechanical deformability in devices and integrated systems.Therefore,we perform a comprehensive review of the design strategies and insights of flexible infrared optoelectronic sensors,including the fundamentals of infrared photodetectors,selection of materials and device architectures,fabrication techniques and design strategies,and the discussion of architectural and functional integration towards applications in wearable optoelectronics and advanced image sensing.Finally,this article offers insights into future directions to practically realize the ultra-high performance and smart sensors enabled by infrared-sensitive materials,covering challenges in materials development and device micro-/nanofabrication.Benchmarks for scaling these techniques across fabrication,performance,and integration are presented,alongside perspectives on potential applications in medication and health,biomimetic vision,and neuromorphic sensory systems,etc.展开更多
Reconstruction of a traumatic distal femur defect remains a therapeutic challenge.Bone defect implants have been proposed to substitute the bone defect,and their biomechanical performances can be analyzed via a numeri...Reconstruction of a traumatic distal femur defect remains a therapeutic challenge.Bone defect implants have been proposed to substitute the bone defect,and their biomechanical performances can be analyzed via a numerical approach.However,the material assumptions for past computational human femur simulations were mainly homogeneous.Thus,this study aimed to design and analyze scaffolds for reconstructing the distal femur defect using a patient-specific finite element modeling technique.A three-dimensional finite element model of the human femur with accurate geometry and material distribution was developed using the finite element method and material mapping technique.An intact femur and a distal femur defect model treated with nine microstructure scaffolds and two solid scaffolds were investigated and compared under a single-leg stance loading.The results showed that the metal solid scaffold design could provide the most stable fixation for reconstructing the distal femur defect.However,the fixation stability was affected by various microstructure designs and pillar diameters.A microstructure scaffold can be designed to satisfy all the biomechanical indexes,opening up future possibilities for more stable reconstructions.A three-dimensional finite element model of the femur with real bone geometry and bone material distribution can be developed,and this patient-specific femur model can be used for studying other femoral fractures or injuries,paving the way for more comprehensive research in the field.Besides,this patient-specific finite element modeling technique can also be applied to developing other human or animal bone models,expanding the scope of biomechanical research.展开更多
To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The s...To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The seismic resilience of the no-isolation railway stations(NIRS)and the isolation railway stations(IRS)were compared to provide a numerical result of the improvement in resilience.The results show that in the station isolation design,the station's functional requirements and structural characteristics should be considered and the appropriate placement of isolation bearings is under the waiting room.Under the action of a rare earthquake,the repair cost,repair time,rate of harm and death of the IRS were decreased by 8.04 million,18.30 days,6.93×10^(-3)and 1.21×10^(-3),respectively,when compared to the NIRS.The IRS received a seismic resilience grade of three-stars and the NIRS only one-star,indicating that rational isolation design improves the seismic resilience of stations.Thus,for the design of stations close to earthquake faults,it is suggested to utilize appropriate isolation techniques to improve their seismic resilience.展开更多
Powder bed fusion(PBF)in metallic additive manufacturing offers the ability to produce intricate geometries,high-strength components,and reliable products.However,powder processing before energy-based binding signific...Powder bed fusion(PBF)in metallic additive manufacturing offers the ability to produce intricate geometries,high-strength components,and reliable products.However,powder processing before energy-based binding significantly impacts the final product’s integrity.Processing maps guide efficient process design to minimize defects,but creating them through experimentation alone is challenging due to the wide range of parameters,necessitating a comprehensive computational parametric analysis.In this study,we used the discrete element method to parametrically analyze the powder processing design space in PBF of stainless steel 316L powders.Uniform lattice parameter sweeps are often used for parametric analysis,but are computationally intensive.We find that non-uniform parameter sweep based on the low discrepancy sequence(LDS)algorithm is ten times more efficient at exploring the design space while accurately capturing the relationship between powder flow dynamics and bed packing density.We introduce a multi-layer perceptron(MLP)model to interpolate parametric causalities within the LDS parameter space.With over 99%accuracy,it effectively captures these causalities while requiring fewer simulations.Finally,we generate processing design maps for machine setups and powder selections for efficient process design.We find that recoating speed has the highest impact on powder processing quality,followed by recoating layer thickness,particle size,and inter-particle friction.展开更多
The present landscape design of private villa garden merely pursues the splendid and noble package,but ignores the realistic demands of the house owners.According to this,this study aimed to summarize the design metho...The present landscape design of private villa garden merely pursues the splendid and noble package,but ignores the realistic demands of the house owners.According to this,this study aimed to summarize the design methods and elements of the private villa garden landscaping,conclude that the future design of private villa garden should follow the principle of exquisite design and elaborate the connotation of exquisite design in detail so as to provide new landscape design ways for private villa garden in accord with the characters of the times.展开更多
This study explored the origin and development of modern garden city,by integrating concepts of world modern garden city and characteristics of Chengdu cultures,analyzed the application of its aesthetic value and the ...This study explored the origin and development of modern garden city,by integrating concepts of world modern garden city and characteristics of Chengdu cultures,analyzed the application of its aesthetic value and the design of its artistic conception.It was found that Chengdu City had high aesthetic value such as a large area of green spaces and unique recreational cultures,as well as a great potential of unifying idyllic images and natural cultures.To design Chengdu into a world modern garden city,the planning of its urban green space system should be taken as the foundation,"one group and three districts" as the construction system,urban folk cultures,logistics and traffic,information and other such networks as the support to achieve the "beauty of nature,social equity and urban-rural integration".展开更多
This paper explored the embodiment of restorative environmental design in Chinese classical gardens,aiming to enhance the emphasis on traditional garden art and provide some reference for creation of modern garden lan...This paper explored the embodiment of restorative environmental design in Chinese classical gardens,aiming to enhance the emphasis on traditional garden art and provide some reference for creation of modern garden landscape.展开更多
基金supported by the National Science Foundation CA-REER Grant(Grant No.2145392)the startup funding at Syracuse Uni-versity for supporting the research work.
文摘The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite number of cases,this relationship is difficult to be revealed for complex irregular distributions,preventing design of such material structures to meet certain mechanical requirements.The noticeable developments of artificial intelligence(AI)algorithms in material design enables to detect the hidden structure-mechanics correlations which is essential for designing composite of complex structures.It is intriguing how these tools can assist composite design.Here,we focus on the rapid generation of bicontinuous composite structures together with the stress distribution in loading.We find that generative AI,enabled through fine-tuned Low Rank Adaptation models,can be trained with a few inputs to generate both synthetic composite structures and the corresponding von Mises stress distribution.The results show that this technique is convenient in generating massive composites designs with useful mechanical information that dictate stiffness,fracture and robustness of the material with one model,and such has to be done by several different experimental or simulation tests.This research offers valuable insights for the improvement of composite design with the goal of expanding the design space and automatic screening of composite designs for improved mechanical functions.
基金funded by the Zhejiang Provincial Natural Science Foundation of China(LD21B060001)the National Natural Science Foundation of China(22078296,21576240).
文摘Polylactic acid(PLA)is a potential polymer material used as a substitute for traditional plastics,and the accurate molecular weight distribution range of PLA is strictly required in practical applications.Therefore,exploring the relationship between synthetic conditions and PLA molecular weight is crucially important.In this work,direct polycondensation combined with overlay sampling uniform design(OSUD)was applied to synthesize the low molecular weight PLA.Then a multiple regression model and two artificial neural network models on PLA molecular weight versus reaction temperature,reaction time,and catalyst dosage were developed for PLA molecular weight prediction.The characterization results indicated that the low molecular weight PLA was efficiently synthesized under this method.Meanwhile,the experimental dataset acquired from OSUD successfully established three predictive models for PLA molecular weight.Among them,both artificial neural network models had significantly better predictive performance than the regression model.Notably,the radial basis function neural network model had the best predictive accuracy with only 11.9%of mean relative error on the validation dataset,which improved by 67.7%compared with the traditional multiple regression model.This work successfully predicted PLA molecular weight in a direct polycondensation process using artificial neural network models combined with OSUD,which provided guidance for the future implementation of molecular weight-controlled polymer's synthesis.
文摘This paper conducts a comprehensive review of existing research on Privacy by Design (PbD) and behavioral economics, explores the intersection of Privacy by Design (PbD) and behavioral economics, and how designers can leverage “nudges” to encourage users towards privacy-friendly choices. We analyze the limitations of rational choice in the context of privacy decision-making and identify key opportunities for integrating behavioral economics into PbD. We propose a user-centered design framework for integrating behavioral economics into PbD, which includes strategies for simplifying complex choices, making privacy visible, providing feedback and control, and testing and iterating. Our analysis highlights the need for a more nuanced understanding of user behavior and decision-making in the context of privacy, and demonstrates the potential of behavioral economics to inform the design of more effective PbD solutions.
文摘Bridge engineering is highly specialized and has spatial characteristics,which puts forward higher requirements for design work.The advancement of information technology has provided ample tools to facilitate bridge design work,with building information modeling(BIM)technology being one of them.BIM technology ensures the efficiency and quality of the forward design of bridges,while also reducing construction costs.This article starts with defining the concept of BIM technology,followed by a discussion on its advantages in bridge design and application process,which serves as a reference for other bridge designers.
文摘The aim of the article is to explore the influence of the water landscape design of a rehabilitation garden for patients with mental disorders on the recovery effect of patients,intending to provide a better rehabilitation environment for patients with mental disorders.Based on literature research,this article reviews three aspects of evidence-based design theory,the concept of water landscape in rehabilitation gardens,and the types of water features in rehabilitation gardens.The results show that well-designed water features can significantly improve patients’psychological state and reduce anxiety and stress,and that water landscape design in rehabilitation gardens is an effective rehabilitation tool that can facilitate the recovery process of patients with mental disorders.Future designs should take into full consideration patients’needs and preferences,as well as best practices in waterscape design,to maximize its positive impact on patients’recovery.
文摘As an important part of urban construction,elderly-friendly construction is crucial to the formation of an elderly-friendly society,which has been widely recognized internationally.Especially after the COVID-19 pandemic,various organizations around the world have called for changes in public space and urban building planning,with an emphasis on the accessibility of green spaces.This underscores the complexity and difficulty of integrating vulnerable groups of the elderly into cities and using infrastructure and public space.
基金supported by the Chenguang Program of the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission.
文摘This research establishes a strategic framework for developing a salt culture-themed agricultural garden in Jintan,Jiangsu to boost rural vibrancy and cultural tourism while honoring local salt heritage.It employs the Analytic Hierarchy Process(AHP)for a data-driven and structured approach to evaluate the sustainability and cultural significance of agricultural initiatives.This framework ensures a balanced blend of agriculture,culture,and tourism to foster a sustainable and culturally rich experience.The study highlights the value of structured methodologies in planning culturally impactful agricultural projects.
基金Humanities and Social Science Research Project of Colleges and Universities in Hebei Province(BJS2022039)2022 Annual Project of Education Science Research 14th“Five-Year”Plan in Hebei Province(2203094)+1 种基金2017 New Engineering Research and Practice Project of Hebei Colleges and Universities(2017GJXGK041)Doctoral Fund of Tangshan Normal University(2022A04)。
文摘This research takes China-aided construction projects in Asia since the Belt and Road Initiative as examples to explore the applicability of Chinese architectural design standards in other Asian countries.So far,the standards demonstrated the highest applicability in South Asia is the best followed by Southeast Asia.Chinese architectural design standards for educational buildings showed the highest applicability,followed by office,medical,and sports buildings.This study puts forward some strategies to improve the applicability of Chinese architectural design standards.These strategies include integrating regionalism and local cultural traditions,optimizing energy efficiency,and aligning designs with local usage habits.This study serves as a reference for similar projects in the future.
文摘With the progress of science and technology and the acceleration of industrialization,the modern industrial park is an important carrier of industrial development.The importance of its standard plant design has become increasingly prominent.With the development of new quality productive forces as the background,this research deeply discusses the key points of standard plant design in modern industrial parks.This paper uses literature review and case analysis to systematically analyze the important role of standard plant design in developing new quality productive forces in modern industrial parks and puts forward suggestions for optimizing design.It is found that the rationality,intelligence,and environmental protection of plant design are the key factors affecting the development of new quality productive forces.The paper summarizes the core points of modern industrial park standard plant design to provide a reference for the future development of related industries.
基金supported by the National Natural Science Foundation of China(No.52471184)the Science and Technology Major Project of Hunan Province,China(No.2019GK1012)+1 种基金the Postgraduate Scientific Research Innovation Project of Xiangtan University,China(No.XDCX2023Y174)the Postgraduate Scientific Research Innovation Project of Xiangtan University,China(No.XDCX2023Y173).
文摘In order to develop a generic framework capable of designing novel amorphous alloys with selected target properties,a predictor−corrector inverse design scheme(PCIDS)consisting of a predictor module and a corrector module was presented.A high-precision forward prediction model based on deep neural networks was developed to implement these two parts.Of utmost importance,domain knowledge-guided inverse design networks(DKIDNs)and regular inverse design networks(RIDNs)were also developed.The forward prediction model possesses a coefficient of determination(R^(2))of 0.990 for the shear modulus and 0.986 for the bulk modulus on the testing set.Furthermore,the DKIDNs model exhibits superior performance compared to the RIDNs model.It is finally demonstrated that PCIDS can efficiently predict amorphous alloy compositions with the required target properties.
文摘This paper explains how the optimized classrooms were selected and the results that were achieved by the optimizations carried out and finalized.The context of the research is the city of Concepción,in Chile.Virtual models of classrooms were evaluated using the Radiance software.We used a methodology that allowed us to determine the luminous conditions under different types of skies,seasons of the year and times of the day.The evaluation of the typologies was performed based on three defined criteria,in order to achieve the stated design objectives.We defined the optimal solutions for each orientation and,finally,we stated design recommendations for daylit classrooms to ensure the visual comfort of the students.These recommendations link all that found in the initial analysis with that found in the optimization stage.
基金support from the National Natural Science Foundation of China(62204015)the Beijing Natural Science Foundation(L223006).
文摘Infrared optoelectronic sensing is the core of many critical applications such as night vision,health and medication,military,space exploration,etc.Further including mechanical flexibility as a new dimension enables novel features of adaptability and conformability,promising for developing next-generation optoelectronic sensory applications toward reduced size,weight,price,power consumption,and enhanced performance(SWaP^(3)).However,in this emerging research frontier,challenges persist in simultaneously achieving high infrared response and good mechanical deformability in devices and integrated systems.Therefore,we perform a comprehensive review of the design strategies and insights of flexible infrared optoelectronic sensors,including the fundamentals of infrared photodetectors,selection of materials and device architectures,fabrication techniques and design strategies,and the discussion of architectural and functional integration towards applications in wearable optoelectronics and advanced image sensing.Finally,this article offers insights into future directions to practically realize the ultra-high performance and smart sensors enabled by infrared-sensitive materials,covering challenges in materials development and device micro-/nanofabrication.Benchmarks for scaling these techniques across fabrication,performance,and integration are presented,alongside perspectives on potential applications in medication and health,biomimetic vision,and neuromorphic sensory systems,etc.
基金funded by the TaipeiMedical University-National Taiwan University of Science and Technology joint research program under Grant No.TMU-NTUST-109-09.
文摘Reconstruction of a traumatic distal femur defect remains a therapeutic challenge.Bone defect implants have been proposed to substitute the bone defect,and their biomechanical performances can be analyzed via a numerical approach.However,the material assumptions for past computational human femur simulations were mainly homogeneous.Thus,this study aimed to design and analyze scaffolds for reconstructing the distal femur defect using a patient-specific finite element modeling technique.A three-dimensional finite element model of the human femur with accurate geometry and material distribution was developed using the finite element method and material mapping technique.An intact femur and a distal femur defect model treated with nine microstructure scaffolds and two solid scaffolds were investigated and compared under a single-leg stance loading.The results showed that the metal solid scaffold design could provide the most stable fixation for reconstructing the distal femur defect.However,the fixation stability was affected by various microstructure designs and pillar diameters.A microstructure scaffold can be designed to satisfy all the biomechanical indexes,opening up future possibilities for more stable reconstructions.A three-dimensional finite element model of the femur with real bone geometry and bone material distribution can be developed,and this patient-specific femur model can be used for studying other femoral fractures or injuries,paving the way for more comprehensive research in the field.Besides,this patient-specific finite element modeling technique can also be applied to developing other human or animal bone models,expanding the scope of biomechanical research.
基金National Natural Science Foundation of China under Grant No.52278534Sichuan Provincial Natural Science Foundation of China under Grant No.2022NSFSC0423。
文摘To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The seismic resilience of the no-isolation railway stations(NIRS)and the isolation railway stations(IRS)were compared to provide a numerical result of the improvement in resilience.The results show that in the station isolation design,the station's functional requirements and structural characteristics should be considered and the appropriate placement of isolation bearings is under the waiting room.Under the action of a rare earthquake,the repair cost,repair time,rate of harm and death of the IRS were decreased by 8.04 million,18.30 days,6.93×10^(-3)and 1.21×10^(-3),respectively,when compared to the NIRS.The IRS received a seismic resilience grade of three-stars and the NIRS only one-star,indicating that rational isolation design improves the seismic resilience of stations.Thus,for the design of stations close to earthquake faults,it is suggested to utilize appropriate isolation techniques to improve their seismic resilience.
基金supported by the funding provided by Boeing Center for Aviation and Aerospace Safety.
文摘Powder bed fusion(PBF)in metallic additive manufacturing offers the ability to produce intricate geometries,high-strength components,and reliable products.However,powder processing before energy-based binding significantly impacts the final product’s integrity.Processing maps guide efficient process design to minimize defects,but creating them through experimentation alone is challenging due to the wide range of parameters,necessitating a comprehensive computational parametric analysis.In this study,we used the discrete element method to parametrically analyze the powder processing design space in PBF of stainless steel 316L powders.Uniform lattice parameter sweeps are often used for parametric analysis,but are computationally intensive.We find that non-uniform parameter sweep based on the low discrepancy sequence(LDS)algorithm is ten times more efficient at exploring the design space while accurately capturing the relationship between powder flow dynamics and bed packing density.We introduce a multi-layer perceptron(MLP)model to interpolate parametric causalities within the LDS parameter space.With over 99%accuracy,it effectively captures these causalities while requiring fewer simulations.Finally,we generate processing design maps for machine setups and powder selections for efficient process design.We find that recoating speed has the highest impact on powder processing quality,followed by recoating layer thickness,particle size,and inter-particle friction.
文摘The present landscape design of private villa garden merely pursues the splendid and noble package,but ignores the realistic demands of the house owners.According to this,this study aimed to summarize the design methods and elements of the private villa garden landscaping,conclude that the future design of private villa garden should follow the principle of exquisite design and elaborate the connotation of exquisite design in detail so as to provide new landscape design ways for private villa garden in accord with the characters of the times.
基金Supported by Protection of Linpan Resources and Demonstration Protection of Bamboo Industry Chain Cultivation in West Sichuan under the Supervision of Sichuan Provincial Department of Science and Technology (2009FZ0028)~~
文摘This study explored the origin and development of modern garden city,by integrating concepts of world modern garden city and characteristics of Chengdu cultures,analyzed the application of its aesthetic value and the design of its artistic conception.It was found that Chengdu City had high aesthetic value such as a large area of green spaces and unique recreational cultures,as well as a great potential of unifying idyllic images and natural cultures.To design Chengdu into a world modern garden city,the planning of its urban green space system should be taken as the foundation,"one group and three districts" as the construction system,urban folk cultures,logistics and traffic,information and other such networks as the support to achieve the "beauty of nature,social equity and urban-rural integration".
文摘This paper explored the embodiment of restorative environmental design in Chinese classical gardens,aiming to enhance the emphasis on traditional garden art and provide some reference for creation of modern garden landscape.