The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its c...The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its concepts and characteristics,and made deep exploration to its application in landscape planning and design.The results indicated that modern construction art had a significant impact on landscape spatial planning and layout,spatial design forms,and spatial ornaments.The use of modern construction art concepts could make landscape design more scientific,artistic,and humane,creating higher quality leisure and entertainment venues for audiences.展开更多
BACKGROUND Advances in implant material and design have allowed for improvements in total knee arthroplasty(TKA)outcomes.A cruciate retaining(CR)TKA provides the least constraint of TKA designs by preserving the nativ...BACKGROUND Advances in implant material and design have allowed for improvements in total knee arthroplasty(TKA)outcomes.A cruciate retaining(CR)TKA provides the least constraint of TKA designs by preserving the native posterior cruciate ligament.Limited research exists that has examined clinical outcomes or patient reported outcome measures(PROMs)of a large cohort of patients undergoing a CR TKA utilizing a kinematically designed implant.It was hypothesized that the studied CR Knee System would demonstrate favorable outcomes and a clinically significant improvement in pain and functional scores.AIM To assess both short-term and mid-term clinical outcomes and PROMs of a novel CR TKA design.METHODS A retrospective,multi-surgeon study identified 255 knees undergoing a TKA utilizing a kinematically designed CR Knee System(JOURNEY™II CR;Smith and Nephew,Inc.,Memphis,TN)at an urban,academic medical institution between March 2015 and July 2021 with a minimum of two-years of clinical follow-up with an orthopedic surgeon.Patient demographics,surgical information,clinical outcomes,and PROMs data were collected via query of electronic medical records.The PROMs collected in the present study included the Knee Injury and Osteoarthritis Outcome Score for Joint Replacement(KOOS JR)and Patient-Reported Outcomes Measurement Information System(PROMIS■)scores.The significance of improvements in mean PROM scores from preoperative scores to scores collected at six months and two-years postoperatively was analyzed using Independent Samples t-tests.RESULTS Of the 255 patients,65.5%were female,43.8%were White,and patients had an average age of 60.6 years.Primary osteoarthritis(96.9%)was the most common primary diagnosis.The mean surgical time was 105.3 minutes and mean length of stay was 2.1 d with most patients discharged home(92.5%).There were 18 emergency department(ED)visits within 90 d of surgery resulting in a 90 d ED visit rate of 7.1%,including a 2.4%orthopedic-related ED visit rate and a 4.7%non-orthopedic-related ED visit rate.There were three(1.2%)hospital readmissions within 90 d postoperatively.With a mean time to latest follow-up of 3.3 years,four patients(1.6%)required revision,two for arthrofibrosis,one for aseptic femoral loosening,and one for peri-prosthetic joint infection.There were significant improvements in KOOS JR,PROMIS Pain Intensity,PROMIS Pain Interference,PROMIS Mobility,and PROMIS Physical Health from preoperative scores to six month and two-year postoperative scores.CONCLUSION The evaluated implant is an effective,novel design offering excellent outcomes and low complication rates.At a mean follow up of 3.3 years,four patients required revisions,three aseptic and one septic,resulting in an overall implant survival rate of 98.4%and an aseptic survival rate of 98.8%.The results of our study demonstrate the utility of this kinematically designed implant in the setting of primary TKA.展开更多
In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consump...In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.展开更多
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second...To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.展开更多
Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various t...Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various thermal transport behaviors,achieving thermal transparency stands out as particularly desirable and intriguing.Our earlier work demonstrated the use of a thermal metamaterial-based periodic interparticle system as the underlying structure for manipulating thermal transport behavior and achieving thermal transparency.In this paper,we introduce an approach based on graph neural network to address the complex inverse design problem of determining the design parameters for a thermal metamaterial-based periodic interparticle system with the desired thermal transport behavior.Our work demonstrates that combining graph neural network modeling and inference is an effective approach for solving inverse design problems associated with attaining desirable thermal transport behaviors using thermal metamaterials.展开更多
This study was aimed to explore the feasibility of introducing two mainstream AI drawing applications,Midjournal and Stable Diffusion,into the environmental art and design courses in higher education institutions.On t...This study was aimed to explore the feasibility of introducing two mainstream AI drawing applications,Midjournal and Stable Diffusion,into the environmental art and design courses in higher education institutions.On the basis of introducing the development history of AI drawing technology,the characteristics of Midjournal and Stable Diffusion and their applications in teaching were described in detail.The analysis on its practical application in public space design courses showed that AI drawing technology could significantly improve students’creative efficiency and the possibility of artistic creation,while also enriching the expressive power of design.In spite of the challenges such as technical accuracy,response to complex design requirements,hardware dependencies,and student dependencies,the application of AI drawing technology had an overall positive prospects in the field of education.Finally,the value of AI drawing technology in teaching was emphasized,and the challenges it brought were discussed,as well as how to fully utilize this technology while maintaining teaching objectives and educational principles.展开更多
The ability to estimate earthquake source locations,along with the appraisal of relevant uncertainties,is paramount in monitoring both natural and human-induced micro-seismicity.For this purpose,a monitoring network m...The ability to estimate earthquake source locations,along with the appraisal of relevant uncertainties,is paramount in monitoring both natural and human-induced micro-seismicity.For this purpose,a monitoring network must be designed to minimize the location errors introduced by geometrically unbalanced networks.In this study,we first review different sources of errors relevant to the localization of seismic events,how they propagate through localization algorithms,and their impact on outcomes.We then propose a quantitative method,based on a Monte Carlo approach,to estimate the uncertainty in earthquake locations that is suited to the design,optimization,and assessment of the performance of a local seismic monitoring network.To illustrate the performance of the proposed approach,we analyzed the distribution of the localization uncertainties and their related dispersion for a highly dense grid of theoretical hypocenters in both the horizontal and vertical directions using an actual monitoring network layout.The results expand,quantitatively,the qualitative indications derived from purely geometrical parameters(azimuthal gap(AG))and classical detectability maps.The proposed method enables the systematic design,optimization,and evaluation of local seismic monitoring networks,enhancing monitoring accuracy in areas proximal to hydrocarbon production,geothermal fields,underground natural gas storage,and other subsurface activities.This approach aids in the accurate estimation of earthquake source locations and their associated uncertainties,which are crucial for assessing and mitigating seismic risks,thereby enabling the implementation of proactive measures to minimize potential hazards.From an operational perspective,reliably estimating location accuracy is crucial for evaluating the position of seismogenic sources and assessing possible links between well activities and the onset of seismicity.展开更多
To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the ...To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the comprehensive artillery internal ballistic dynamics(AIBD)model,based on propellant combustion,rotation band engraving,projectile axial motion,and rifling wear models,was established and validated.This model was systematically decomposed into subsystems from a system engineering perspective.The study then detailed the MS-MDO methodology,which included Stage I(MDO stage)employing an improved collaborative optimization method for consistent design variables,and Stage II(Performance Optimization)focusing on the independent optimization of local design variables and performance metrics.The methodology was applied to the AIBD problem.Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation counts,thereby accelerating system-level convergence.Meanwhile,Stage II optimization markedly enhanced overall performance.These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method.展开更多
This study aims to further promote the inheritance and innovative development of intangible cultural heritage in Yunnan Province,promote the protection,inheritance,integration,and innovation of ethnic culture in Lijia...This study aims to further promote the inheritance and innovative development of intangible cultural heritage in Yunnan Province,promote the protection,inheritance,integration,and innovation of ethnic culture in Lijiang,strengthen the protection and inheritance of Baisha murals in Lijiang,and change the teaching of art design majors in vocational colleges in Yunnan.Given the lack of traditional Chinese culture and local ethnic culture,this article focuses on the teaching of art design majors in Yunnan vocational colleges.It explores the construction model of the cultural inheritance and innovation carrier of Lijiang Baisha murals to meet the spiritual and cultural needs of the local people,and efforts will be made to promote the high-quality development of the Baisha ethnic area in Lijiang.展开更多
Costume is not only an important carrier of human civilization,but also reflects the development level of material and spiritual civilization.In modern costume design,we have incorporated colorful cultural elements,wh...Costume is not only an important carrier of human civilization,but also reflects the development level of material and spiritual civilization.In modern costume design,we have incorporated colorful cultural elements,which are not only the embodiment of aesthetics but also the aesthetic expression based on culture.Printmaking art,as a kind of traditional art,has its unique style and characteristics.In teaching practice,we instruct students to integrate the creative spirit and formal elements of printmaking into costume design,to realize the inheritance and innovation of traditional culture.Under the background of globalization,we should be more committed to inheriting and carrying forward the excellent Chinese national culture and promoting the popularization and dissemination of traditional culture.Exploring the application of printmaking art in costume design through teaching practice aims to construct a new teaching mode,which provides a reference for the application of other traditional arts in modern design teaching.展开更多
Digital media art is an emerging art form that combines digital technology and media art.It has huge potential to bring innovation to urban public spaces and provide them with vibrant artistic experiences.This article...Digital media art is an emerging art form that combines digital technology and media art.It has huge potential to bring innovation to urban public spaces and provide them with vibrant artistic experiences.This article analyzes the design significance and value of digital media art in urban public space,its various forms of application in urban public space design,and the innovative ideas and paths that digital media art can take in urban public space to guide the future.The application and innovative methods of digital media art in urban public space design provide certain theoretical and practical references for urban planners and designers.展开更多
Despite continuous efforts to improve the robustness of cardiac valve implants,neither bioprosthetic nor mechanical valves fulfill both hemodynamic and durability requirements.This study discussed novel flexible leafl...Despite continuous efforts to improve the robustness of cardiac valve implants,neither bioprosthetic nor mechanical valves fulfill both hemodynamic and durability requirements.This study discussed novel flexible leaflet designs,focusing on polymeric materials with proven hemocompatibility,such as polyether ether ketone,of much higher stiffness than native tissue,aiming at optimal valve implants.A biomimetic valve with a single-curvature belly-curve(B-C)was used as a reference for new design variants with a double-curvature B-C with varying radii.Soft(13.2 MPa)and stiff(2.4 GPa)leaflet materials and different thicknesses were studied using lean simulations and in vitro experiments under physiologic hemodynamic conditions.The performance was assessed using opening pressure(OP)and orifice area(OA).The latter was determined by a newly developed automatized image processing tool.Experimental trends are in agreement with simulations and demonstrated that a buckling-inspired double-curvature leaflet design significantly enhances the trileaflet valve opening behavior,which is particularly advantageous for stiffer leaflet materials.Compared to the reference,the best-performing variant showed an OP improvement of 47%and 44%based on simulations and experiments,respectively.In contrast,the achieved mean pressure differential was directly comparable to state-of-the-art bioprosthetic valves.The OA was slightly reduced for new variants but still in the satisfying range.展开更多
With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generat...With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generative AI technology and its potential in personalized learning,interactive content creation and adaptive assessment in education were introduced firstly.Then,the application case of generative AI tools in teaching content creation,scenario-based teaching content development,visual teaching content development,complex concept deconstruction and analogy,student-led application practice and other aspects in the teaching of Building Decoration Materials was discussed.Through the teaching experiment and effect evaluation,the positive influence of generative AI technology on the improvement of students'learning effect and teaching efficiency was verified.Finally,some thoughts and inspirations on the combination of educational theory and generative AI technology,the integration of teaching design and generative AI technology,and the practice cases and effect evaluation were put forward,and the importance of teacher role transformation and personalized learning path design was emphasized to provide theoretical and practical support for the innovative development of higher education.展开更多
The application significance of Fuyang paper cutting art in cultural and creative design from the perspective of rural revitalization was discussed,and the implementation principles and specific practices of applying ...The application significance of Fuyang paper cutting art in cultural and creative design from the perspective of rural revitalization was discussed,and the implementation principles and specific practices of applying the elements and techniques of Fuyang traditional paper cutting art in cultural and creative products with local features were analyzed to provide reference for rural revitalization and development of cultural industry.展开更多
Here,we introduce a partitioned design method that is oriented toward airgap harmonic for permanent magnet vernier(PMV)motors.The method proposes the utilization of airgap flux harmonics as an effective bridge between...Here,we introduce a partitioned design method that is oriented toward airgap harmonic for permanent magnet vernier(PMV)motors.The method proposes the utilization of airgap flux harmonics as an effective bridge between the torque design region and the torque performances.To illustrate the efficacy of this method,a partitioned design PMV motor is presented and compared with the initial design.Firstly,the torque design region of the rotor is artfully divided into the torque enhancement region and ripple reduction region.Meanwhile,the main harmonics that generate output torque are chosen and enhanced,optimization.Moreover,the harmonics that generate torque ripple are selected and reduced based on torque harmonics optimization.Finally,the functions of the partitioned PMV motor torque are assessed based on the finite element method.By the purposeful design of these two regions,the output torque is strengthened while torque ripple is inhibited effectively,verifying the effectiveness and reasonability of the proposed design method.展开更多
Highway bridges are an important part of transportation infrastructure.With the rapid development of transportation,the design of bridge construction has received significant attention.The complex environment of some ...Highway bridges are an important part of transportation infrastructure.With the rapid development of transportation,the design of bridge construction has received significant attention.The complex environment of some regions necessitates the selection of seismic design to improve the stability of the structure during the design phase of highway bridge construction.This article briefly discusses bridge structures that may be subject to seismic hazards and analyzes seismic design standards to explore their application in the design process of highway bridges,with the aim of providing support for bridge construction.展开更多
Mountainous cities are dominated by mountainous,hilly,and steep terrain,which brings certain complexity and particularity to the planning and construction of waterfront spaces in these cities compared to plain cities....Mountainous cities are dominated by mountainous,hilly,and steep terrain,which brings certain complexity and particularity to the planning and construction of waterfront spaces in these cities compared to plain cities.Waterfront spaces,often serving as the core areas of city development,possess favorable location advantages and special attributes of water-land intersection,giving them more possibilities for functional transformation[1].However,the ultimate goal of design is to provide users with a vibrant waterfront area.The design of waterfront spaces should focus more on people’s behavioral needs,allowing users to feel a good interaction between the place and their behavioral needs during space usage[2].Therefore,the design incorporates human environmental behavior,increases interactive experiences,and enriches spatial interest.展开更多
With the rapid development of information technology,Artificial Intelligence(AI)is gradually applied to a wide range of fields,especially the powerful ability of ChatGPT to bring infinite possibilities for education,b...With the rapid development of information technology,Artificial Intelligence(AI)is gradually applied to a wide range of fields,especially the powerful ability of ChatGPT to bring infinite possibilities for education,but teachers’attitudes toward using it are not yet clear.The study investigates the use of ChatGPT by kindergarten teachers to support instructional design using questionnaires and interviews to explore the attitudes and perceptions of kindergarten teachers toward its use.The results indicate that kindergarten teachers hold positive preferences for technology acceptance,perceived self-efficacy,and learning attitudes toward using ChatGPT for instructional design.Meanwhile,the study argues that more research is needed in the future to focus on how kindergarten teachers can aptly use ChatGPT to improve the quality of instruction in realistic instructionenvironments.展开更多
This paper analyzes the geographical,climatic,cultural and religious factors that influence station building design,and discusses the characteristics and design concepts of traditional Indonesian building.Additionally...This paper analyzes the geographical,climatic,cultural and religious factors that influence station building design,and discusses the characteristics and design concepts of traditional Indonesian building.Additionally,the following innovative concepts are proposed for station building design:innovation in the building form that organically integrates high speed railway characteristics with regional features;innovation in spatial layout that adapts to the local climate and culture;innovation in flexible flow lines and diverse commercial spaces;innovation in interior design that fully incorporates the local culture.The station buildings of Jakarta-Bandung HSR not only fulfill the function of passenger riding but also serve as prominent landmark structures that spread regional culture and represent the city's image so as to offer valuable insights for the design of high speed railway station buildings in future overseas projects.展开更多
基金Sponsored by Germplasm Collection and Conservation Project for the Forest and Grass Germplasm Resources in Anhui Province in 2024(hxkt2024111)Science and Technology Plan Project of Huangshan(2022KN-02)+1 种基金Humanities and Social Sciences Research Project of Anhui Higher Education Institutions(SKHS2019B07)Key School-level Project of Huangshan University(2022xkjzd004).
文摘The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its concepts and characteristics,and made deep exploration to its application in landscape planning and design.The results indicated that modern construction art had a significant impact on landscape spatial planning and layout,spatial design forms,and spatial ornaments.The use of modern construction art concepts could make landscape design more scientific,artistic,and humane,creating higher quality leisure and entertainment venues for audiences.
文摘BACKGROUND Advances in implant material and design have allowed for improvements in total knee arthroplasty(TKA)outcomes.A cruciate retaining(CR)TKA provides the least constraint of TKA designs by preserving the native posterior cruciate ligament.Limited research exists that has examined clinical outcomes or patient reported outcome measures(PROMs)of a large cohort of patients undergoing a CR TKA utilizing a kinematically designed implant.It was hypothesized that the studied CR Knee System would demonstrate favorable outcomes and a clinically significant improvement in pain and functional scores.AIM To assess both short-term and mid-term clinical outcomes and PROMs of a novel CR TKA design.METHODS A retrospective,multi-surgeon study identified 255 knees undergoing a TKA utilizing a kinematically designed CR Knee System(JOURNEY™II CR;Smith and Nephew,Inc.,Memphis,TN)at an urban,academic medical institution between March 2015 and July 2021 with a minimum of two-years of clinical follow-up with an orthopedic surgeon.Patient demographics,surgical information,clinical outcomes,and PROMs data were collected via query of electronic medical records.The PROMs collected in the present study included the Knee Injury and Osteoarthritis Outcome Score for Joint Replacement(KOOS JR)and Patient-Reported Outcomes Measurement Information System(PROMIS■)scores.The significance of improvements in mean PROM scores from preoperative scores to scores collected at six months and two-years postoperatively was analyzed using Independent Samples t-tests.RESULTS Of the 255 patients,65.5%were female,43.8%were White,and patients had an average age of 60.6 years.Primary osteoarthritis(96.9%)was the most common primary diagnosis.The mean surgical time was 105.3 minutes and mean length of stay was 2.1 d with most patients discharged home(92.5%).There were 18 emergency department(ED)visits within 90 d of surgery resulting in a 90 d ED visit rate of 7.1%,including a 2.4%orthopedic-related ED visit rate and a 4.7%non-orthopedic-related ED visit rate.There were three(1.2%)hospital readmissions within 90 d postoperatively.With a mean time to latest follow-up of 3.3 years,four patients(1.6%)required revision,two for arthrofibrosis,one for aseptic femoral loosening,and one for peri-prosthetic joint infection.There were significant improvements in KOOS JR,PROMIS Pain Intensity,PROMIS Pain Interference,PROMIS Mobility,and PROMIS Physical Health from preoperative scores to six month and two-year postoperative scores.CONCLUSION The evaluated implant is an effective,novel design offering excellent outcomes and low complication rates.At a mean follow up of 3.3 years,four patients required revisions,three aseptic and one septic,resulting in an overall implant survival rate of 98.4%and an aseptic survival rate of 98.8%.The results of our study demonstrate the utility of this kinematically designed implant in the setting of primary TKA.
基金supported by the Hong Kong Polytechnic University(Project No.1-WZ1Y).
文摘In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.
基金National Key R&D Program of China(Grant No.2020YFC1512404).
文摘To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.
基金funding from the National Natural Science Foundation of China (Grant Nos.12035004 and 12320101004)the Innovation Program of Shanghai Municipal Education Commission (Grant No.2023ZKZD06).
文摘Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various thermal transport behaviors,achieving thermal transparency stands out as particularly desirable and intriguing.Our earlier work demonstrated the use of a thermal metamaterial-based periodic interparticle system as the underlying structure for manipulating thermal transport behavior and achieving thermal transparency.In this paper,we introduce an approach based on graph neural network to address the complex inverse design problem of determining the design parameters for a thermal metamaterial-based periodic interparticle system with the desired thermal transport behavior.Our work demonstrates that combining graph neural network modeling and inference is an effective approach for solving inverse design problems associated with attaining desirable thermal transport behaviors using thermal metamaterials.
基金Sponsored by Educational and Teaching Reform Projects in 2023 at North China University of Technology.
文摘This study was aimed to explore the feasibility of introducing two mainstream AI drawing applications,Midjournal and Stable Diffusion,into the environmental art and design courses in higher education institutions.On the basis of introducing the development history of AI drawing technology,the characteristics of Midjournal and Stable Diffusion and their applications in teaching were described in detail.The analysis on its practical application in public space design courses showed that AI drawing technology could significantly improve students’creative efficiency and the possibility of artistic creation,while also enriching the expressive power of design.In spite of the challenges such as technical accuracy,response to complex design requirements,hardware dependencies,and student dependencies,the application of AI drawing technology had an overall positive prospects in the field of education.Finally,the value of AI drawing technology in teaching was emphasized,and the challenges it brought were discussed,as well as how to fully utilize this technology while maintaining teaching objectives and educational principles.
文摘The ability to estimate earthquake source locations,along with the appraisal of relevant uncertainties,is paramount in monitoring both natural and human-induced micro-seismicity.For this purpose,a monitoring network must be designed to minimize the location errors introduced by geometrically unbalanced networks.In this study,we first review different sources of errors relevant to the localization of seismic events,how they propagate through localization algorithms,and their impact on outcomes.We then propose a quantitative method,based on a Monte Carlo approach,to estimate the uncertainty in earthquake locations that is suited to the design,optimization,and assessment of the performance of a local seismic monitoring network.To illustrate the performance of the proposed approach,we analyzed the distribution of the localization uncertainties and their related dispersion for a highly dense grid of theoretical hypocenters in both the horizontal and vertical directions using an actual monitoring network layout.The results expand,quantitatively,the qualitative indications derived from purely geometrical parameters(azimuthal gap(AG))and classical detectability maps.The proposed method enables the systematic design,optimization,and evaluation of local seismic monitoring networks,enhancing monitoring accuracy in areas proximal to hydrocarbon production,geothermal fields,underground natural gas storage,and other subsurface activities.This approach aids in the accurate estimation of earthquake source locations and their associated uncertainties,which are crucial for assessing and mitigating seismic risks,thereby enabling the implementation of proactive measures to minimize potential hazards.From an operational perspective,reliably estimating location accuracy is crucial for evaluating the position of seismogenic sources and assessing possible links between well activities and the onset of seismicity.
基金supported by the“National Natural Science Foundation of China”(Grant Nos.52105106,52305155)the“Jiangsu Province Natural Science Foundation”(Grant Nos.BK20210342,BK20230904)the“Young Elite Scientists Sponsorship Programby CAST”(Grant No.2023JCJQQT061).
文摘To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the comprehensive artillery internal ballistic dynamics(AIBD)model,based on propellant combustion,rotation band engraving,projectile axial motion,and rifling wear models,was established and validated.This model was systematically decomposed into subsystems from a system engineering perspective.The study then detailed the MS-MDO methodology,which included Stage I(MDO stage)employing an improved collaborative optimization method for consistent design variables,and Stage II(Performance Optimization)focusing on the independent optimization of local design variables and performance metrics.The methodology was applied to the AIBD problem.Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation counts,thereby accelerating system-level convergence.Meanwhile,Stage II optimization markedly enhanced overall performance.These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method.
文摘This study aims to further promote the inheritance and innovative development of intangible cultural heritage in Yunnan Province,promote the protection,inheritance,integration,and innovation of ethnic culture in Lijiang,strengthen the protection and inheritance of Baisha murals in Lijiang,and change the teaching of art design majors in vocational colleges in Yunnan.Given the lack of traditional Chinese culture and local ethnic culture,this article focuses on the teaching of art design majors in Yunnan vocational colleges.It explores the construction model of the cultural inheritance and innovation carrier of Lijiang Baisha murals to meet the spiritual and cultural needs of the local people,and efforts will be made to promote the high-quality development of the Baisha ethnic area in Lijiang.
基金Jiangxi Educational Science 13th Five-Year Plan Planning Project(20YB003)2022 Nanchang University Aesthetic Education Special Project(MY2217)。
文摘Costume is not only an important carrier of human civilization,but also reflects the development level of material and spiritual civilization.In modern costume design,we have incorporated colorful cultural elements,which are not only the embodiment of aesthetics but also the aesthetic expression based on culture.Printmaking art,as a kind of traditional art,has its unique style and characteristics.In teaching practice,we instruct students to integrate the creative spirit and formal elements of printmaking into costume design,to realize the inheritance and innovation of traditional culture.Under the background of globalization,we should be more committed to inheriting and carrying forward the excellent Chinese national culture and promoting the popularization and dissemination of traditional culture.Exploring the application of printmaking art in costume design through teaching practice aims to construct a new teaching mode,which provides a reference for the application of other traditional arts in modern design teaching.
文摘Digital media art is an emerging art form that combines digital technology and media art.It has huge potential to bring innovation to urban public spaces and provide them with vibrant artistic experiences.This article analyzes the design significance and value of digital media art in urban public space,its various forms of application in urban public space design,and the innovative ideas and paths that digital media art can take in urban public space to guide the future.The application and innovative methods of digital media art in urban public space design provide certain theoretical and practical references for urban planners and designers.
基金provided by Board of the Swiss Federal Institutes of TechnologyUniversitat Zürichthe Laboratory of Composite Materials and Adaptive structures。
文摘Despite continuous efforts to improve the robustness of cardiac valve implants,neither bioprosthetic nor mechanical valves fulfill both hemodynamic and durability requirements.This study discussed novel flexible leaflet designs,focusing on polymeric materials with proven hemocompatibility,such as polyether ether ketone,of much higher stiffness than native tissue,aiming at optimal valve implants.A biomimetic valve with a single-curvature belly-curve(B-C)was used as a reference for new design variants with a double-curvature B-C with varying radii.Soft(13.2 MPa)and stiff(2.4 GPa)leaflet materials and different thicknesses were studied using lean simulations and in vitro experiments under physiologic hemodynamic conditions.The performance was assessed using opening pressure(OP)and orifice area(OA).The latter was determined by a newly developed automatized image processing tool.Experimental trends are in agreement with simulations and demonstrated that a buckling-inspired double-curvature leaflet design significantly enhances the trileaflet valve opening behavior,which is particularly advantageous for stiffer leaflet materials.Compared to the reference,the best-performing variant showed an OP improvement of 47%and 44%based on simulations and experiments,respectively.In contrast,the achieved mean pressure differential was directly comparable to state-of-the-art bioprosthetic valves.The OA was slightly reduced for new variants but still in the satisfying range.
文摘With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generative AI technology and its potential in personalized learning,interactive content creation and adaptive assessment in education were introduced firstly.Then,the application case of generative AI tools in teaching content creation,scenario-based teaching content development,visual teaching content development,complex concept deconstruction and analogy,student-led application practice and other aspects in the teaching of Building Decoration Materials was discussed.Through the teaching experiment and effect evaluation,the positive influence of generative AI technology on the improvement of students'learning effect and teaching efficiency was verified.Finally,some thoughts and inspirations on the combination of educational theory and generative AI technology,the integration of teaching design and generative AI technology,and the practice cases and effect evaluation were put forward,and the importance of teacher role transformation and personalized learning path design was emphasized to provide theoretical and practical support for the innovative development of higher education.
基金Sponsored by the National Innovation and Entrepreneurship Training Planning Project for University Students(202410378293).
文摘The application significance of Fuyang paper cutting art in cultural and creative design from the perspective of rural revitalization was discussed,and the implementation principles and specific practices of applying the elements and techniques of Fuyang traditional paper cutting art in cultural and creative products with local features were analyzed to provide reference for rural revitalization and development of cultural industry.
基金supported in part by the Natural Science Foundation of China under Grant 51991385,Grant 52177046。
文摘Here,we introduce a partitioned design method that is oriented toward airgap harmonic for permanent magnet vernier(PMV)motors.The method proposes the utilization of airgap flux harmonics as an effective bridge between the torque design region and the torque performances.To illustrate the efficacy of this method,a partitioned design PMV motor is presented and compared with the initial design.Firstly,the torque design region of the rotor is artfully divided into the torque enhancement region and ripple reduction region.Meanwhile,the main harmonics that generate output torque are chosen and enhanced,optimization.Moreover,the harmonics that generate torque ripple are selected and reduced based on torque harmonics optimization.Finally,the functions of the partitioned PMV motor torque are assessed based on the finite element method.By the purposeful design of these two regions,the output torque is strengthened while torque ripple is inhibited effectively,verifying the effectiveness and reasonability of the proposed design method.
文摘Highway bridges are an important part of transportation infrastructure.With the rapid development of transportation,the design of bridge construction has received significant attention.The complex environment of some regions necessitates the selection of seismic design to improve the stability of the structure during the design phase of highway bridge construction.This article briefly discusses bridge structures that may be subject to seismic hazards and analyzes seismic design standards to explore their application in the design process of highway bridges,with the aim of providing support for bridge construction.
文摘Mountainous cities are dominated by mountainous,hilly,and steep terrain,which brings certain complexity and particularity to the planning and construction of waterfront spaces in these cities compared to plain cities.Waterfront spaces,often serving as the core areas of city development,possess favorable location advantages and special attributes of water-land intersection,giving them more possibilities for functional transformation[1].However,the ultimate goal of design is to provide users with a vibrant waterfront area.The design of waterfront spaces should focus more on people’s behavioral needs,allowing users to feel a good interaction between the place and their behavioral needs during space usage[2].Therefore,the design incorporates human environmental behavior,increases interactive experiences,and enriches spatial interest.
基金supported by Major Cultivating Projects of Leading Talents in Philosophy and Social Sciences of Zhejiang Province“Aiming for Common Prosperity:Improvement and Evaluation of Professional Competence of Teachers of Early Childhood Institutions Driven by Multimodal Data Fusion”(23YJRC13ZD-3YB).
文摘With the rapid development of information technology,Artificial Intelligence(AI)is gradually applied to a wide range of fields,especially the powerful ability of ChatGPT to bring infinite possibilities for education,but teachers’attitudes toward using it are not yet clear.The study investigates the use of ChatGPT by kindergarten teachers to support instructional design using questionnaires and interviews to explore the attitudes and perceptions of kindergarten teachers toward its use.The results indicate that kindergarten teachers hold positive preferences for technology acceptance,perceived self-efficacy,and learning attitudes toward using ChatGPT for instructional design.Meanwhile,the study argues that more research is needed in the future to focus on how kindergarten teachers can aptly use ChatGPT to improve the quality of instruction in realistic instructionenvironments.
文摘This paper analyzes the geographical,climatic,cultural and religious factors that influence station building design,and discusses the characteristics and design concepts of traditional Indonesian building.Additionally,the following innovative concepts are proposed for station building design:innovation in the building form that organically integrates high speed railway characteristics with regional features;innovation in spatial layout that adapts to the local climate and culture;innovation in flexible flow lines and diverse commercial spaces;innovation in interior design that fully incorporates the local culture.The station buildings of Jakarta-Bandung HSR not only fulfill the function of passenger riding but also serve as prominent landmark structures that spread regional culture and represent the city's image so as to offer valuable insights for the design of high speed railway station buildings in future overseas projects.