期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Multiple fault diagnosis of down-hole conditions of sucker-rod pumping wells based on Freeman chain code and DCA 被引量:13
1
作者 LI Kun GAO Xian-wen +2 位作者 YANG Wei-bing DAI Ying-long TIAN Zhong-da 《Petroleum Science》 SCIE CAS CSCD 2013年第3期347-360,共14页
It is important to achieve continuous, stable and efficient pumping well operation in actual oilfield operation. Down-hole pumping well working conditions can be monitored in real-time and a reasonable production sche... It is important to achieve continuous, stable and efficient pumping well operation in actual oilfield operation. Down-hole pumping well working conditions can be monitored in real-time and a reasonable production scheme can be designed when computer diagnosis is used. However, it is difficult to make a comprehensive analysis to supply efficient technical guidance for operation of the pumping well with multiple faults of down-hole conditions, which cannot be effectively dealt with by the common methods. To solve this problem, a method based on designated component analysis (DCA) is used in this paper. Freeman chain code is used to represent the down-hole dynamometer card whose important characteristics are extracted to construct a designated mode set. A control chart is used as a basis for fault detection. The upper and lower control lines on the control chart are determined from standard samples in normal working conditions. In an incompletely orthogonal mode, the designated mode set could be divided into some subsets in which the modes are completely orthogonal. The observed data is projected into each designated mode to realize fault detection according to the upper and lower control lines. The examples show that the proposed method can effectively diagnose multiple faults of down-hole conditions. 展开更多
关键词 Sucker-rod pumping wells multiple faults designated component analysis control chart Freeman chain code dynamometer card
下载PDF
Green hydrogen production by intermediate-temperature protonic solid oxide electrolysis cells:Advances,challenges,and perspectives
2
作者 Chunmei Tang Yao Yao +6 位作者 Ning Wang Xiaohan Zhang Fangyuan Zheng Lei Du Dongxiang Luo Yoshitaka Aoki Siyu Ye 《InfoMat》 SCIE CSCD 2024年第3期22-65,共44页
Protonic solid oxide electrolysis cells(P-SOECs)operating at intermediate temperatures,which have low costs,low environmental impact,and high theoretical electrolysis efficiency,are considered promising next-generatio... Protonic solid oxide electrolysis cells(P-SOECs)operating at intermediate temperatures,which have low costs,low environmental impact,and high theoretical electrolysis efficiency,are considered promising next-generation energy conversion devices for green hydrogen production.However,the developments and applications of P-SOECs are restricted by numerous material-and interface-related issues,including carrier mismatch between the anode and electrolyte,current leakage in the electrolyte,poor interfacial contact,and chemical stability.Over the past few decades,considerable attempts have been made to address these issues by improving the properties of P-SOECs.This review comprehensively explores the recent advances in the mechanisms governing steam electrolysis in P-SOECs,optimization strategies,specially designed components,electrochemical performance,and durability.In particular,given that the lack of suitable anode materials has significantly impeded P-SOEC development,the relationships between the transferred carriers and the cell performance,reaction models,and surface decoration approaches are meticulously probed.Finally,the challenges hindering P-SOEC development are discussed and recommendations for future research directions,including theoretical calculations and simulations,structural modification approaches,and large-scale single-cell fabrication,are proposed to stimulate research on P-SOECs and thereby realize efficient electricity-to-hydrogen conversion. 展开更多
关键词 designed components electrochemical performance hydrogen production key materials protonic solid oxide electrolysis cells
原文传递
Progress and challenges of ceramics for supercapacitors 被引量:4
3
作者 Xiaojun Zeng Hanbin Song +1 位作者 Zong-Yang Shen Martin Moskovits 《Journal of Materiomics》 SCIE EI 2021年第6期1198-1224,共27页
Supercapacitors(SCs)are one of the most promising electrical energy storage technologies systems due to their fast storage capability,long cycle stability,high power density,and environmental friendliness.Enormous res... Supercapacitors(SCs)are one of the most promising electrical energy storage technologies systems due to their fast storage capability,long cycle stability,high power density,and environmental friendliness.Enormous research has focused on the design of nanomaterials to achieve low cost,highly efficient,and stable electrodes.Ceramic materials provide promising candidates for SCs electrodes.However,the low specific surface area and relatively low surface activity severely hinder the SCs performance of ceramic materials.Therefore,the basic understanding of ceramic materials,the optimization strategy,and the research progress of ceramic electrodes are the key steps to enable good electrical conductivity and excellent electron transport capabilities,and realize economically feasible ceramic electrodes in industry.Herein,we review recent achievements in manufacturing the ceramic electrodes for SCs,including metal oxide ceramics,multi-elemental oxide ceramics,metal hydroxide ceramics,metal sulfide ceramics,carbon-based ceramics,carbide and nitride ceramics,and other special ceramics(MXene).We focus on the unique and key factors in the component and structural design of ceramic electrodes,which correlate them with SCs performance.In addition,the current technical challenges and perspectives of ceramic electrodes for SCs are also discussed. 展开更多
关键词 Ceramic electrodes Component design Structure design Specific capacitance SUPERCAPACITORS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部