Developing highly efficient microwave absorbing materials(MAMs)to ameliorate the electromagnetic(EM)response and facilitate energy absorption is crucial in both the civil and military industries.Metal-organic framewor...Developing highly efficient microwave absorbing materials(MAMs)to ameliorate the electromagnetic(EM)response and facilitate energy absorption is crucial in both the civil and military industries.Metal-organic framework(MOF)derived nanoporous carbon composites have emerged as advanced MAMs ow-ing to their rich porosity,tunable compositions,facile functionalization,and morphology diversity.To-gether with the flourishing development of composition-tuning strategy,the rational dimension design and elaborate control over the architectures have also evolved into an effective approach to regulating their EM properties.Herein,we provide a comprehensive review of the recent advances in using di-mension and morphology modulation to adjust the microwave attenuation capacities for MOF-derived carbon composites.The underlying design rules and unique advantages for the MAMs of various dimen-sions were discussed with the selection of representative work,providing general concepts and insight on how to efficiently tune the morphologies.Accordingly,the fundamental dimension-morphology-function relationship was also elucidated.Finally,the challenges and perspectives of dimension design and mor-phology control over MOF-derived MAMs were also presented.展开更多
基金supported by t he Shanghai Science&Tech-nology Committee(No.22ZR1403300)the Fundamental Research Funds for the Central Universities(No.2232020A-02)the Na-tional Natural Science Foundation of China(Nos.51871053 and 91963204).
文摘Developing highly efficient microwave absorbing materials(MAMs)to ameliorate the electromagnetic(EM)response and facilitate energy absorption is crucial in both the civil and military industries.Metal-organic framework(MOF)derived nanoporous carbon composites have emerged as advanced MAMs ow-ing to their rich porosity,tunable compositions,facile functionalization,and morphology diversity.To-gether with the flourishing development of composition-tuning strategy,the rational dimension design and elaborate control over the architectures have also evolved into an effective approach to regulating their EM properties.Herein,we provide a comprehensive review of the recent advances in using di-mension and morphology modulation to adjust the microwave attenuation capacities for MOF-derived carbon composites.The underlying design rules and unique advantages for the MAMs of various dimen-sions were discussed with the selection of representative work,providing general concepts and insight on how to efficiently tune the morphologies.Accordingly,the fundamental dimension-morphology-function relationship was also elucidated.Finally,the challenges and perspectives of dimension design and mor-phology control over MOF-derived MAMs were also presented.