An efficient design-for-testability (DFT) technique is proposed to achieve low overhead for scan-based delay fault testing. Existing techniques for delay test such as skewed-load or broadside make the test generatio...An efficient design-for-testability (DFT) technique is proposed to achieve low overhead for scan-based delay fault testing. Existing techniques for delay test such as skewed-load or broadside make the test generation process complex and produce lower coverage for scan-based designs as compared with non-scan designs, whereas techniques such as enhanced-scan test can make the test easy but need an extra holding latch to add substantial hardware overhead. A new tri-state holding logic is presented to replace the common holding latch in enhanced-scan test to get a substantial low hardware overhead. This scheme can achieve low delay overhead by avoiding the holding latch on the critical timing scan path. What's more, this method can also keep the state and signal activity in the combinational circuit from the scan during data scan-in operation to reduce the power dissipation. Experiment results on a set of ISCAS89 benchmarks show the efficiency of the proposed scheme.展开更多
Nowadays, application model systems for decision-making based on non-classical logic such as Paraconsistent Logic are used successfully in the treatment of uncertainties. The method presented in this paper is based on...Nowadays, application model systems for decision-making based on non-classical logic such as Paraconsistent Logic are used successfully in the treatment of uncertainties. The method presented in this paper is based on the fundamental concepts of Paraconsistent Annotated Logic with annotation of 2 values (PAL2v). In this study, two algorithms based on PAL2v are presented gradually, to extract the effects of the contradiction in signals of information from a database of uncertain knowledge. The Paraconsistent Extractors Algorithms of Contradiction Effect-Para Extrctr is applied to filters of networks of analyses (PANets) of signal information, where uncertain and contradictory signals may be found. Software test case scenarios are subordinated to an application model of Paraconsistent decision-making, which provides an analysis using Paraconsistent Logic in the treatment of uncertainties for design software testing strategies. This quality-quantity criterion to evaluate the software product quality is based on the characteristics of software testability analysis. The Para consistent reasoning application model system presented in this case study, reveals itself to be more efficient than the traditional methods because it has the potential to offer an appropriate treatment to different originally contradicting source information.展开更多
Parity testing is one of the compact testing techniques, which, traditionally, relies on applying all 2^n input combinations to an n-input combinational circuit without need of knowing the implementation of the circui...Parity testing is one of the compact testing techniques, which, traditionally, relies on applying all 2^n input combinations to an n-input combinational circuit without need of knowing the implementation of the circuits under test. The faults can be detected just by observing and comparing its parity of whole output of circuit with the expectation one. The way seemed to be less interesting to the test eagineers in the past days, mainly due to the reasons of its exhaustive testing and time-cousuming, which became a barrier as the number of input lines gets growing. However its great facility and convenience in testing still interest to the engineers who need to have a quick look at the qualities of the circuits without generating the test patterns for a given circuit to be tested. In this paper, a new approach called pseudo-parity testing is presented to deal with the dilemma we are facing: i. e. to change an exhaustive parity testing into a non-exhaustive one, followed by a pseudo- parity testable design to help realize the new way of pseudo-parity testing. The idea of pseudo-parity testing presented in this paper may resume its spirits towards its promising future.展开更多
This paper describes the design for testability (DFT) challenges and techniques of Godson-3 microprocessor, which is a scalable multicore processor based on the scalable mesh of crossbar (SMOC) on-chip network and...This paper describes the design for testability (DFT) challenges and techniques of Godson-3 microprocessor, which is a scalable multicore processor based on the scalable mesh of crossbar (SMOC) on-chip network and targets high-end applications. Advanced techniques are adopted to make the DFT design scalable and achieve low-power and low-cost test with limited IO resources. To achieve a scalable and flexible test access, a highly elaborate test access mechanism (TAM) is implemented to support multiple test instructions and test modes. Taking advantage of multiple identical cores embedding in the processor, scan partition and on-chip comparisons are employed to reduce test power and test time. Test compression technique is also utilized to decrease test time. To further reduce test power, clock controlling logics are designed with ability to turn off clocks of non-testing partitions. In addition, scan collars of CACHEs are designed to perform functional test with low-speed ATE for speed-binning purposes, which poses low complexity and has good correlation results.展开更多
Accelerated life testing(ALT)has been widely used to obtain information about the product's life characteristics at normal conditions in a relatively short period of time.Two key issues with ALT are test design an...Accelerated life testing(ALT)has been widely used to obtain information about the product's life characteristics at normal conditions in a relatively short period of time.Two key issues with ALT are test design and data analysis.The test design of constant stress ALT was studied in this paper.The test design usually combines engineering experiences with optimization models.Such approaches are hard to be implemented by practitioners.A"pure"empirical approach was presented to address this issue.With the proposed approach,some of the decision variables are determined based on the results from the literature,some of the other variables are determined based on engineering analysis and /or judgment,and the remaining variables are determined based on the empirical relations developed in this paper.A real-world example is included to illustrate the appropriateness of the proposed approach.展开更多
This paper presents a new BIST method for RTL data paths based on single-control testability, a new concept of testability. The BIST method adopts hierarchical test. Test pattern generators are placed only on primary ...This paper presents a new BIST method for RTL data paths based on single-control testability, a new concept of testability. The BIST method adopts hierarchical test. Test pattern generators are placed only on primary inputs and test patterns are propagated to and fed into each module. Test responses are similarly propagated to response analyzers placed only on primary outputs. For the propagation of test patterns and test responses paths existing in the data path are utilized. The DFT method for the single-control testability is also proposed. The advantages of the proposed method are high fault coverage (for single Stuck-at faults), low hardware overhead and capability of at-speed test. Moreover, test patterns generated by test pattern generators can be fed into each module at consecutive system clocks, and thus, the BIST can also detect some faults of other fault models (e.g., transition faults and delay faults) that require consecutive application of test patterns at speed of system clock.展开更多
Testable design techniques for systolic motion estimators based on M-testability conditions are proposed in this paper. The whole motion estimator can be viewed as a two-dimensional iterative logic array (ILA) of pr...Testable design techniques for systolic motion estimators based on M-testability conditions are proposed in this paper. The whole motion estimator can be viewed as a two-dimensional iterative logic array (ILA) of processing elements (PEs) and multiplying elements (MULs). The functions of each PE and MUL are modified to be bijective to meet the M-testable conditions. The number of test patterns is 2^w, where w denotes the word length of a PE. The proposed testable design techniques are also suitable for built-in self-test implementation. According to experimental results, our approaches can achieve 99.27 % fault coverage. The area overhead is about 9 %. To verify our approaches, an experimental chip is also implemented.展开更多
The quality factor of class diagram is critical because it has a significant influence on overall quality of the product, delivered finally. Testability analysis, when done early in the software creation process, is a...The quality factor of class diagram is critical because it has a significant influence on overall quality of the product, delivered finally. Testability analysis, when done early in the software creation process, is a criterion of critical importance to software quality. Reusability is an important quality factor to testability. Its early measurement in object oriented software especially at design phase, allows a design to be reapplied to a new problem without much extra effort. This research paper proposes a research framework for quantification process and does an extensive review on reusability of object oriented software. A metrics based model “Reusability Quantification of Object Oriented Design” has been proposed by establishing the relationship among design properties and reusability and justifying the correlation with the help of statistical measures. Also, “Reusability Quantification Model” is empirically validated and contextual significance of the study shows the high correlation for model acceptance. This research paper facilitates to software developers and designer, the inclusion of reusability quantification model to access and quantify software reusability for quality product.展开更多
This paper presents modified version of a realistic test tool suitable to Design For Testability (DFT) and Built-ln Self Test (BIST) environments. A comprehensive tool is developed in the form of a test simulator....This paper presents modified version of a realistic test tool suitable to Design For Testability (DFT) and Built-ln Self Test (BIST) environments. A comprehensive tool is developed in the form of a test simulator. The simulator is capable of providing a required goal of test for the Circuit Under Test (CUT). The simulator uses the approach of fault diagnostics with fault grading procedures to provide the optimum tests. The current version of the simulator embeds features of exhaustive and pseudo-random test generation schemes along with the search solutions of cost effective test goals. The simulator provides facilities of realizing all possible pseudo-random sequence generators with all possible combinations of seeds. The tool is developed on a common Personal Computer (PC) platform and hence no special software is required. Thereby, it is a low cost tool hence economical. The tool is very much suitable for determining realistic test sequences for a targeted goal of testing for any CUT. The developed tool incorporates flexible Graphical User Interface (GUI) procedures and can be operated without any special programming skill. The tool is debugged and tested with the results of many bench mark circuits. Further, this developed tool can be utilized for educational purposes for many courses such as fault-tolerant computing, fault diagnosis, digital electronics, and safe-reliable-testable digital logic designs.展开更多
In this paper, an Ethernet controller SoC solution and its low power design for testability (DFT) for information appliances are presented. On a single chip, an enhanced one-cycle 8-bit micro controller unit (MCU)...In this paper, an Ethernet controller SoC solution and its low power design for testability (DFT) for information appliances are presented. On a single chip, an enhanced one-cycle 8-bit micro controller unit (MCU), media access control (MAC) circuit and embedded memories such as static random access memory (SRAM), read only memory (ROM) and flash are all integrated together. In order to achieve high fault coverage, at the same time with low test power, different DFT techniques are adopted for different circuits: the scan circuit that reduces switching activity is implemented for digital logic circuits; BIST-based method is employed for the on-chip SRAM and ROM. According to the fault-modeling of embedded flash, we resort to a March-like method for flash built in self test (BIST). By all means above, the result shows that the fault coverage may reach 97%, and the SoC chip is implemented successfully by using 0.25 μm two-poly four-metal mixed signal complementary metal oxide semiconductor (CMOS) technology, the die area is 4.8×4.6 mm^2. Test results show that the maximum throughput of Ethemet packets may reach 7Mb·s^1.展开更多
A novel test access mechanism (TAM) architecture with multi test-channel (TC) based on IEEE Standard 1500 is proposed instead of the traditional sub-TAM structure. The cost model of an area-time associated test an...A novel test access mechanism (TAM) architecture with multi test-channel (TC) based on IEEE Standard 1500 is proposed instead of the traditional sub-TAM structure. The cost model of an area-time associated test and the corresponding lower bound of system-on-chip (SoC) test time are established based on this TAM architecture. The model provides a more reliable method to control the SoC scheduling and reduces the complexity in related algorithm research. The result based on the area time associated test cost model has been validated using the ITC02 test benchmark.展开更多
The boundary scan architecture and its basic principle of board level built in test(BIT) technology are presented. A design for board level built in test and the method to implement test tool are brought forward.
Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design...Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design is an important way to improve PHM capability. Testability modeling and analysis are the foundation of DFT. This paper proposes a novel approach of testability modeling and analysis based on failure evolution mechanisms. At the component level, the fault progression-related information of each unit under test (UUT) in a system is obtained by means of failure modes, evolution mechanisms, effects and criticality analysis (FMEMECA), and then the failure-symptom dependency can be generated. At the system level, the dynamic attributes of UUTs are assigned by using the bond graph methodology, and then the symptom-test dependency can be obtained by means of the functional flow method. Based on the failure-symptom and symptom-test dependencies, testability analysis for PHM systems can be realized. A shunt motor is used to verify the application of the approach proposed in this paper. Experimental results show that this approach is able to be applied to testability modeling and analysis for PHM systems very well, and the analysis results can provide a guide for engineers to design for testability in order to improve PHM performance.展开更多
基金This project was supported by the National Natural Science Foundation of China (90407007).
文摘An efficient design-for-testability (DFT) technique is proposed to achieve low overhead for scan-based delay fault testing. Existing techniques for delay test such as skewed-load or broadside make the test generation process complex and produce lower coverage for scan-based designs as compared with non-scan designs, whereas techniques such as enhanced-scan test can make the test easy but need an extra holding latch to add substantial hardware overhead. A new tri-state holding logic is presented to replace the common holding latch in enhanced-scan test to get a substantial low hardware overhead. This scheme can achieve low delay overhead by avoiding the holding latch on the critical timing scan path. What's more, this method can also keep the state and signal activity in the combinational circuit from the scan during data scan-in operation to reduce the power dissipation. Experiment results on a set of ISCAS89 benchmarks show the efficiency of the proposed scheme.
文摘Nowadays, application model systems for decision-making based on non-classical logic such as Paraconsistent Logic are used successfully in the treatment of uncertainties. The method presented in this paper is based on the fundamental concepts of Paraconsistent Annotated Logic with annotation of 2 values (PAL2v). In this study, two algorithms based on PAL2v are presented gradually, to extract the effects of the contradiction in signals of information from a database of uncertain knowledge. The Paraconsistent Extractors Algorithms of Contradiction Effect-Para Extrctr is applied to filters of networks of analyses (PANets) of signal information, where uncertain and contradictory signals may be found. Software test case scenarios are subordinated to an application model of Paraconsistent decision-making, which provides an analysis using Paraconsistent Logic in the treatment of uncertainties for design software testing strategies. This quality-quantity criterion to evaluate the software product quality is based on the characteristics of software testability analysis. The Para consistent reasoning application model system presented in this case study, reveals itself to be more efficient than the traditional methods because it has the potential to offer an appropriate treatment to different originally contradicting source information.
基金This work was supported by National Natural Science Foundation of China under the grant No .60173029 and 60473033
文摘Parity testing is one of the compact testing techniques, which, traditionally, relies on applying all 2^n input combinations to an n-input combinational circuit without need of knowing the implementation of the circuits under test. The faults can be detected just by observing and comparing its parity of whole output of circuit with the expectation one. The way seemed to be less interesting to the test eagineers in the past days, mainly due to the reasons of its exhaustive testing and time-cousuming, which became a barrier as the number of input lines gets growing. However its great facility and convenience in testing still interest to the engineers who need to have a quick look at the qualities of the circuits without generating the test patterns for a given circuit to be tested. In this paper, a new approach called pseudo-parity testing is presented to deal with the dilemma we are facing: i. e. to change an exhaustive parity testing into a non-exhaustive one, followed by a pseudo- parity testable design to help realize the new way of pseudo-parity testing. The idea of pseudo-parity testing presented in this paper may resume its spirits towards its promising future.
基金Supported by the National High-Tech Research and Development 863 Program of China under Grant Nos. 2008AA010901,2009AA01Z125,2009AA01Z103the National Natural Science Foundation of China under Grant Nos. 60736012,60921002,60803029,61050002+1 种基金the National Basic Research 973 Program of China under Grant No. 2005CB321600the Important National Science and Technology Specific Projects under Grant Nos. 2009ZX01028-002-003,2009ZX01029-001-003
文摘This paper describes the design for testability (DFT) challenges and techniques of Godson-3 microprocessor, which is a scalable multicore processor based on the scalable mesh of crossbar (SMOC) on-chip network and targets high-end applications. Advanced techniques are adopted to make the DFT design scalable and achieve low-power and low-cost test with limited IO resources. To achieve a scalable and flexible test access, a highly elaborate test access mechanism (TAM) is implemented to support multiple test instructions and test modes. Taking advantage of multiple identical cores embedding in the processor, scan partition and on-chip comparisons are employed to reduce test power and test time. Test compression technique is also utilized to decrease test time. To further reduce test power, clock controlling logics are designed with ability to turn off clocks of non-testing partitions. In addition, scan collars of CACHEs are designed to perform functional test with low-speed ATE for speed-binning purposes, which poses low complexity and has good correlation results.
基金National Natural Science Foundation of China(No.71371035)
文摘Accelerated life testing(ALT)has been widely used to obtain information about the product's life characteristics at normal conditions in a relatively short period of time.Two key issues with ALT are test design and data analysis.The test design of constant stress ALT was studied in this paper.The test design usually combines engineering experiences with optimization models.Such approaches are hard to be implemented by practitioners.A"pure"empirical approach was presented to address this issue.With the proposed approach,some of the decision variables are determined based on the results from the literature,some of the other variables are determined based on engineering analysis and /or judgment,and the remaining variables are determined based on the empirical relations developed in this paper.A real-world example is included to illustrate the appropriateness of the proposed approach.
文摘This paper presents a new BIST method for RTL data paths based on single-control testability, a new concept of testability. The BIST method adopts hierarchical test. Test pattern generators are placed only on primary inputs and test patterns are propagated to and fed into each module. Test responses are similarly propagated to response analyzers placed only on primary outputs. For the propagation of test patterns and test responses paths existing in the data path are utilized. The DFT method for the single-control testability is also proposed. The advantages of the proposed method are high fault coverage (for single Stuck-at faults), low hardware overhead and capability of at-speed test. Moreover, test patterns generated by test pattern generators can be fed into each module at consecutive system clocks, and thus, the BIST can also detect some faults of other fault models (e.g., transition faults and delay faults) that require consecutive application of test patterns at speed of system clock.
文摘Testable design techniques for systolic motion estimators based on M-testability conditions are proposed in this paper. The whole motion estimator can be viewed as a two-dimensional iterative logic array (ILA) of processing elements (PEs) and multiplying elements (MULs). The functions of each PE and MUL are modified to be bijective to meet the M-testable conditions. The number of test patterns is 2^w, where w denotes the word length of a PE. The proposed testable design techniques are also suitable for built-in self-test implementation. According to experimental results, our approaches can achieve 99.27 % fault coverage. The area overhead is about 9 %. To verify our approaches, an experimental chip is also implemented.
文摘The quality factor of class diagram is critical because it has a significant influence on overall quality of the product, delivered finally. Testability analysis, when done early in the software creation process, is a criterion of critical importance to software quality. Reusability is an important quality factor to testability. Its early measurement in object oriented software especially at design phase, allows a design to be reapplied to a new problem without much extra effort. This research paper proposes a research framework for quantification process and does an extensive review on reusability of object oriented software. A metrics based model “Reusability Quantification of Object Oriented Design” has been proposed by establishing the relationship among design properties and reusability and justifying the correlation with the help of statistical measures. Also, “Reusability Quantification Model” is empirically validated and contextual significance of the study shows the high correlation for model acceptance. This research paper facilitates to software developers and designer, the inclusion of reusability quantification model to access and quantify software reusability for quality product.
文摘This paper presents modified version of a realistic test tool suitable to Design For Testability (DFT) and Built-ln Self Test (BIST) environments. A comprehensive tool is developed in the form of a test simulator. The simulator is capable of providing a required goal of test for the Circuit Under Test (CUT). The simulator uses the approach of fault diagnostics with fault grading procedures to provide the optimum tests. The current version of the simulator embeds features of exhaustive and pseudo-random test generation schemes along with the search solutions of cost effective test goals. The simulator provides facilities of realizing all possible pseudo-random sequence generators with all possible combinations of seeds. The tool is developed on a common Personal Computer (PC) platform and hence no special software is required. Thereby, it is a low cost tool hence economical. The tool is very much suitable for determining realistic test sequences for a targeted goal of testing for any CUT. The developed tool incorporates flexible Graphical User Interface (GUI) procedures and can be operated without any special programming skill. The tool is debugged and tested with the results of many bench mark circuits. Further, this developed tool can be utilized for educational purposes for many courses such as fault-tolerant computing, fault diagnosis, digital electronics, and safe-reliable-testable digital logic designs.
基金Supported by the National High Technology Research and Development Program of China (2006AA01Z226)
文摘In this paper, an Ethernet controller SoC solution and its low power design for testability (DFT) for information appliances are presented. On a single chip, an enhanced one-cycle 8-bit micro controller unit (MCU), media access control (MAC) circuit and embedded memories such as static random access memory (SRAM), read only memory (ROM) and flash are all integrated together. In order to achieve high fault coverage, at the same time with low test power, different DFT techniques are adopted for different circuits: the scan circuit that reduces switching activity is implemented for digital logic circuits; BIST-based method is employed for the on-chip SRAM and ROM. According to the fault-modeling of embedded flash, we resort to a March-like method for flash built in self test (BIST). By all means above, the result shows that the fault coverage may reach 97%, and the SoC chip is implemented successfully by using 0.25 μm two-poly four-metal mixed signal complementary metal oxide semiconductor (CMOS) technology, the die area is 4.8×4.6 mm^2. Test results show that the maximum throughput of Ethemet packets may reach 7Mb·s^1.
基金Project supported by the SDC Project of Science and Technology Commission of Shanghai Municipality (Grant No.08706201000)the AM Foundation Project of Science and Technology Commission of Shanghai Municipality (Grant No.08700741000)+1 种基金the Leading Academic Discipline Project of Shanghai Education Commission (Grant No.J50104)the Innovation Foundation Project of Shanghai University
文摘A novel test access mechanism (TAM) architecture with multi test-channel (TC) based on IEEE Standard 1500 is proposed instead of the traditional sub-TAM structure. The cost model of an area-time associated test and the corresponding lower bound of system-on-chip (SoC) test time are established based on this TAM architecture. The model provides a more reliable method to control the SoC scheduling and reduces the complexity in related algorithm research. The result based on the area time associated test cost model has been validated using the ITC02 test benchmark.
文摘The boundary scan architecture and its basic principle of board level built in test(BIT) technology are presented. A design for board level built in test and the method to implement test tool are brought forward.
基金the National Natural Science Foundation of China(No.51175502)
文摘Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design is an important way to improve PHM capability. Testability modeling and analysis are the foundation of DFT. This paper proposes a novel approach of testability modeling and analysis based on failure evolution mechanisms. At the component level, the fault progression-related information of each unit under test (UUT) in a system is obtained by means of failure modes, evolution mechanisms, effects and criticality analysis (FMEMECA), and then the failure-symptom dependency can be generated. At the system level, the dynamic attributes of UUTs are assigned by using the bond graph methodology, and then the symptom-test dependency can be obtained by means of the functional flow method. Based on the failure-symptom and symptom-test dependencies, testability analysis for PHM systems can be realized. A shunt motor is used to verify the application of the approach proposed in this paper. Experimental results show that this approach is able to be applied to testability modeling and analysis for PHM systems very well, and the analysis results can provide a guide for engineers to design for testability in order to improve PHM performance.