As a new attempt to recycle minute metal scraps, the possibility of manufacturing design materials by semisolid extrusion processing was shown.A design material with an intended shape, such as a character or petal sha...As a new attempt to recycle minute metal scraps, the possibility of manufacturing design materials by semisolid extrusion processing was shown.A design material with an intended shape, such as a character or petal shape, was manufactured using minute metal scraps.Similarly, a design material with an intended color pattern for each metal, such as red copper in a white aluminum matrix, resembling grainlike wood, was manufactured by mixing two or more types of minute metal scrap.In addition, secondary design materials, which have engraved patterns on the surface of the target metal made by an electric discharge machine using the above primary design material as an electrode, were manufactured.展开更多
To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In thi...To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In this paper,two deep learning models are developed and trained with two feature groups extracted from the Materials Project datasets to predict the battery electrochemical performances including average voltage,specific capacity and specific energy.The deep learning models are trained with the multilayer perceptron as the core.The Bayesian optimization and Monte Carlo methods are applied to improve the prediction accuracy of models.Based on 10 types of ion batteries,the correlation coefficients are maintained above 0.9 compared to DFT calculation results and the mean absolute error of the prediction results for voltages of two models can reach 0.41 V and 0.20 V,respectively.The electrochemical performance prediction times for the two trained models on thousands of batteries are only 72.9 ms and 75.7 ms.Besides,the two deep learning models are applied to approach the screening of emerging electrode materials for sodium-ion and potassium-ion batteries.This work can contribute to a high-throughput computational method to accelerate the rational and fast materials discovery and design.展开更多
The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requ...The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requirements proposed by the project.Then,the vari-ation curve between the maximum bearing stress of the unit structure and the structural variables was obtained by simulation.Meanwhile,the mathematical equation between the maximum bearing stress and the structural variables could be obtained through MATLAB fitting.The results indicated that with the decrease in the number of cells,the compressive strength of the prepared column lattice increased(400 to 4 cells,compressive strength 29 MPa to 160 MPa).However,the yield strength increased with the number of cells.The compression strength of the simple cross-truss lattice samples indicated an increase trend with the decrease of the pillar size(an increase of the number of units),reaching 91 MPa(pillar diameter 0.52 mm,number of units 25).While the yield strength increased with the increasing of the number of units.In addition,the additive manufacturing processes of simple cubic lattice and simple cross-pillar lattice were investigated using selective laser melting.The compression performance obtained from the experiment is compared with the simulation results,which are in good agreement.The results of this paper can provide an important reference for optimizing design of lattice materials.展开更多
In this article,the authors design a speaking unit based on needs analysis following Hutchinson and Waters'(1987) model.First,the rationale in designing this unit is introduced,which involves the teaching approach...In this article,the authors design a speaking unit based on needs analysis following Hutchinson and Waters'(1987) model.First,the rationale in designing this unit is introduced,which involves the teaching approach adopted and relevant theories in organizing the materials.Then,the teaching plan of this speaking unit is provided and some activities are designed to create an authentic and optimal situation for students to practice their speaking skill.展开更多
Materials development has historically been driven by human needs and desires, and this is likely to con- tinue in the foreseeable future. The global population is expected to reach ten billion by 2050, which will pro...Materials development has historically been driven by human needs and desires, and this is likely to con- tinue in the foreseeable future. The global population is expected to reach ten billion by 2050, which will promote increasingly large demands for clean and high-ef ciency energy, personalized consumer prod- ucts, secure food supplies, and professional healthcare. New functional materials that are made and tai- lored for targeted properties or behaviors will be the key to tackling this challenge. Traditionally, advanced materials are found empirically or through experimental trial-and-error approaches. As big data generated by modern experimental and computational techniques is becoming more readily avail- able, data-driven or machine learning (ML) methods have opened new paradigms for the discovery and rational design of materials. In this review article, we provide a brief introduction on various ML methods and related software or tools. Main ideas and basic procedures for employing ML approaches in materials research are highlighted. We then summarize recent important applications of ML for the large-scale screening and optimal design of polymer and porous materials, catalytic materials, and energetic mate- rials. Finally, concluding remarks and an outlook are provided.展开更多
Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced elect...Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.展开更多
AlSi10Mg fabricated by selective laser melting(SLM)had a unique network-like silicon-rich structure,and the mechanism for its formation was explained by molecular dynamics(MD)simulations.The effects of the silicon-ric...AlSi10Mg fabricated by selective laser melting(SLM)had a unique network-like silicon-rich structure,and the mechanism for its formation was explained by molecular dynamics(MD)simulations.The effects of the silicon-rich phase and Mg-containing structure on corrosion were studied by first-principles methods.According to the simulations,corrosion resistant materials were designed,samples with laser powers of 150 W,200 W and 250 W were fabricated.The results indicated that a local thermal gradient during laser printing caused Si segregation,and the rapid cooling rate lead to a large number of subgrains,which assisted precipitation.The difference in potential caused galvanic corrosion,and a structure with low work function in the molten pool caused pitting.The corrosion resistance of materials processed with a high laser power increased.展开更多
Light-to-thermal conversion materials(LTCMs)have been of great interest to researchers due to their impressive energy conversion capacity and wide range of applications in biomedical,desalination,and synergistic catal...Light-to-thermal conversion materials(LTCMs)have been of great interest to researchers due to their impressive energy conversion capacity and wide range of applications in biomedical,desalination,and synergistic catalysis.Given the limited advances in existing materials(metals,semiconductors,π-conjugates),researchers generally adopt the method of constructing complex systems and hybrid structures to optimize performance and achieve multifunctional integration.However,the development of LTCMs is still in its infancy as the physical mechanism of light-to-thermal conversion is unclear.In this review,we proposed design strategies for efficient LTCMs by analyzing the physical process of light-tothermal conversion.First,we analyze the nature of light absorption and heat generation to reveal the physical processes of light-to-thermal conversion.Then,we explain the light-to-thermal conversion mechanisms of metallic,semiconducting andπ-conjugated LCTMs,and propose new material design strategies and performance improvement methods.Finally,we summarize the challenges and prospects of LTCMs in emerging applications such as solar water evaporation and photothermal catalysis.展开更多
With the widespread use of lithium ion batteries in portable electronics and electric vehicles,further improvements in the performance of lithium ion battery materials and accurate prediction of battery state are of i...With the widespread use of lithium ion batteries in portable electronics and electric vehicles,further improvements in the performance of lithium ion battery materials and accurate prediction of battery state are of increasing interest to battery researchers.Machine learning,one of the core technologies of artificial intelligence,is rapidly changing many fields with its ability to learn from historical data and solve complex tasks,and it has emerged as a new technique for solving current research problems in the field of lithium ion batteries.This review begins with the introduction of the conceptual framework of machine learning and the general process of its application,then reviews some of the progress made by machine learning in both improving battery materials design and accurate prediction of battery state,and finally points out the current application problems of machine learning and future research directions.It is believed that the use of machine learning will further promote the large-scale application and improvement of lithium-ion batteries.展开更多
This paper reviews the rapid progress in the field of high-throughput modeling based on the Materials Genome Initiative, and its application in the discovery and design of lithium battery materials. It offers examples...This paper reviews the rapid progress in the field of high-throughput modeling based on the Materials Genome Initiative, and its application in the discovery and design of lithium battery materials. It offers examples of screening, optimization and design of electrodes, electrolytes, coatings, additives, etc. and the possibility of introducing the machine learning method into material design. The application of the material genome method in the development of lithium battery materials provides the possibility to speed up the upgrading of new candidates in the discovery of lots of functional materials.展开更多
Traditional materials discovery is in ‘trial-and-error’ mode, leading to the issues of low-efficiency, high-cost, and unsustainability in materials design. Meanwhile, numerous experimental and computational trials a...Traditional materials discovery is in ‘trial-and-error’ mode, leading to the issues of low-efficiency, high-cost, and unsustainability in materials design. Meanwhile, numerous experimental and computational trials accumulate enormous quantities of data with multi-dimensionality and complexity, which might bury critical ‘structure–properties’ rules yet unfortunately not well explored. Machine learning(ML), as a burgeoning approach in materials science, may dig out the hidden structure–properties relationship from materials bigdata, therefore, has recently garnered much attention in materials science. In this review, we try to shortly summarize recent research progress in this field, following the ML paradigm:(i) data acquisition →(ii) feature engineering →(iii) algorithm →(iv) ML model →(v) model evaluation →(vi) application. In section of application, we summarize recent work by following the ‘material science tetrahedron’:(i) structure and composition →(ii) property →(iii) synthesis →(iv) characterization, in order to reveal the quantitative structure–property relationship and provide inverse design countermeasures. In addition, the concurrent challenges encompassing data quality and quantity, model interpretability and generalizability, have also been discussed. This review intends to provide a preliminary overview of ML from basic algorithms to applications.展开更多
A simple uniaxial oedometric system is developed to test the elastic modulus of granular materials. The stress- strain relationship is first measured under conditions of uniaxial compression with additional lateral st...A simple uniaxial oedometric system is developed to test the elastic modulus of granular materials. The stress- strain relationship is first measured under conditions of uniaxial compression with additional lateral stress and strain, then the elastic modulus of the material is determined by the linear fitting method. It is found that the modulus is positively correlated to the grain size and negatively correlated to the container size. Arching and dragging are revealed to be the mechanism of such correlations by using the digital image correlation method and the pressure film technology based on the statistical method.展开更多
The growing worldwide energy needs call for developing novel materials for energy applications.Ab initio density functional theory(DFT)calculations allow the understanding and prediction of material properties at the ...The growing worldwide energy needs call for developing novel materials for energy applications.Ab initio density functional theory(DFT)calculations allow the understanding and prediction of material properties at the atomic scale,thus,play an important role in energy materials design.Due to the fast progress of computer power and development of calculation methodologies,DFT-based calculations have greatly improved their predictive power,and are now leading to a paradigm shift towards theory-driven materials design.The aim of this perspective is to introduce the advances in DFT calculations which accelerate energy materials design.We first present state-of-the-art DFT methods for accurate simulation of various key properties of energy materials.Then we show examples of how these advances lead to the discovery of new energy materials for photovoltaic,photocatalytic,thermoelectric,and battery applications.The challenges and future research directions in computational design of energy materials are highlighted at the end.展开更多
The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the ...The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the corresponding specification.Suggestions were proposed and the modified.The real-coded Genetic Algorithm was given to deal with the problems of excessive computational cost and premature convergence.Software system of optimal design of deep jet method pile was developed.展开更多
Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for m...Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for material discovery and design.ML can be applied to discover new materials quickly and effectively,with significant savings in resources and time compared with traditional experiments and density functional theory(DFT)calculations.In this review,we present the application of ML in per-ovskites and briefly review the recent works in the field of ML-assisted perovskite design.Firstly,the advantages of perovskites in solar cells and the merits of ML applied to perovskites are discussed.Secondly,the workflow of ML in perovskite design and some basic ML algorithms are introduced.Thirdly,the applications of ML in predicting various properties of perovskite materials and devices are reviewed.Finally,we propose some prospects for the future development of this field.The rapid devel-opment of ML technology will largely promote the process of materials science,and ML will become an increasingly popular method for predicting the target properties of materials and devices.展开更多
Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite ne...Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite new,fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance.Severe volume expansion,low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides,so that rational design and engineering are crucial to circumvent these disadvantages.Herein,this review provides an in-depth discussion of recent investigations and progresses of metal tellurides,beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs.In the following,recent design and engineering strategies of metal tellurides,including morphology engineering,compositing,defect engineering and heterostructure construction,for high-performance MBs are summarized.The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control,composition,electron configuration and structural complexity on the electrochemical performance.In closing,outlooks and prospects for future development of metal tellurides are proposed.This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost.展开更多
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co...Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.展开更多
Based on the analyses of the severity of cutting process as well as the failure mechanisms of ceramic tools, a model for designing functionally gradient ceramic tool materials with symmetrical distribution is presente...Based on the analyses of the severity of cutting process as well as the failure mechanisms of ceramic tools, a model for designing functionally gradient ceramic tool materials with symmetrical distribution is presented, by which a Al 2O 3/(W,Ti)C ceramic tool material FG 2 was developed. Multi objective optimization method was employed in designing the compositional distribution of this ceramic tool material. The results of both continuous and intermittent cutting tests are indicative of the much better cutting behavior of the functionally gradient ceramic tool FG 2 than that of the common ceramic tool SG 4.展开更多
The world’s increasing population requires the process industry to produce food,fuels,chemicals,and consumer products in a more efficient and sustainable way.Functional process materials lie at the heart of this chal...The world’s increasing population requires the process industry to produce food,fuels,chemicals,and consumer products in a more efficient and sustainable way.Functional process materials lie at the heart of this challenge.Traditionally,new advanced materials are found empirically or through trial-and-error approaches.As theoretical methods and associated tools are being continuously improved and computer power has reached a high level,it is now efficient and popular to use computational methods to guide material selection and design.Due to the strong interaction between material selection and the operation of the process in which the material is used,it is essential to perform material and process design simultaneously.Despite this significant connection,the solution of the integrated material and process design problem is not easy because multiple models at different scales are usually required.Hybrid modeling provides a promising option to tackle such complex design problems.In hybrid modeling,the material properties,which are computationally expensive to obtain,are described by data-driven models,while the well-known process-related principles are represented by mechanistic models.This article highlights the significance of hybrid modeling in multiscale material and process design.The generic design methodology is first introduced.Six important application areas are then selected:four from the chemical engineering field and two from the energy systems engineering domain.For each selected area,state-ofthe-art work using hybrid modeling for multiscale material and process design is discussed.Concluding remarks are provided at the end,and current limitations and future opportunities are pointed out.展开更多
Simultaneously improving the energy density and power density of electrochemical energy storage systems is the ultimate goal of electrochemical energy storage technology.An effective strategy to achieve this goal is t...Simultaneously improving the energy density and power density of electrochemical energy storage systems is the ultimate goal of electrochemical energy storage technology.An effective strategy to achieve this goal is to take advantage of the high capacity and rapid kinetics of electrochemical proton storage to break through the power limit of batteries and the energy limit of capacitors.This article aims to review the research progress on the physicochemical properties,electrochemical performance,and reaction mechanisms of electrode materials for electrochemical proton storage.According to the different charge storage mechanisms,the surface redox,intercalation,and conversion materials are classified and introduced in detail,where the influence of crystal water and other nanostructures on the migration kinetics of protons is clarified.Several reported advanced full cell devices are summarized to promote the commercialization of electrochemical proton storage.Finally,this review provides a framework for research directions of charge storage mechanism,basic principles of material structure design,construction strategies of full cell device,and goals of practical application for electrochemical proton storage.展开更多
文摘As a new attempt to recycle minute metal scraps, the possibility of manufacturing design materials by semisolid extrusion processing was shown.A design material with an intended shape, such as a character or petal shape, was manufactured using minute metal scraps.Similarly, a design material with an intended color pattern for each metal, such as red copper in a white aluminum matrix, resembling grainlike wood, was manufactured by mixing two or more types of minute metal scrap.In addition, secondary design materials, which have engraved patterns on the surface of the target metal made by an electric discharge machine using the above primary design material as an electrode, were manufactured.
基金supported by the National Natural Science Foundation of China(No.52102470).
文摘To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In this paper,two deep learning models are developed and trained with two feature groups extracted from the Materials Project datasets to predict the battery electrochemical performances including average voltage,specific capacity and specific energy.The deep learning models are trained with the multilayer perceptron as the core.The Bayesian optimization and Monte Carlo methods are applied to improve the prediction accuracy of models.Based on 10 types of ion batteries,the correlation coefficients are maintained above 0.9 compared to DFT calculation results and the mean absolute error of the prediction results for voltages of two models can reach 0.41 V and 0.20 V,respectively.The electrochemical performance prediction times for the two trained models on thousands of batteries are only 72.9 ms and 75.7 ms.Besides,the two deep learning models are applied to approach the screening of emerging electrode materials for sodium-ion and potassium-ion batteries.This work can contribute to a high-throughput computational method to accelerate the rational and fast materials discovery and design.
基金supported by the National Natural Science Foundation of China(Grant No.52101058,51875541).
文摘The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requirements proposed by the project.Then,the vari-ation curve between the maximum bearing stress of the unit structure and the structural variables was obtained by simulation.Meanwhile,the mathematical equation between the maximum bearing stress and the structural variables could be obtained through MATLAB fitting.The results indicated that with the decrease in the number of cells,the compressive strength of the prepared column lattice increased(400 to 4 cells,compressive strength 29 MPa to 160 MPa).However,the yield strength increased with the number of cells.The compression strength of the simple cross-truss lattice samples indicated an increase trend with the decrease of the pillar size(an increase of the number of units),reaching 91 MPa(pillar diameter 0.52 mm,number of units 25).While the yield strength increased with the increasing of the number of units.In addition,the additive manufacturing processes of simple cubic lattice and simple cross-pillar lattice were investigated using selective laser melting.The compression performance obtained from the experiment is compared with the simulation results,which are in good agreement.The results of this paper can provide an important reference for optimizing design of lattice materials.
文摘In this article,the authors design a speaking unit based on needs analysis following Hutchinson and Waters'(1987) model.First,the rationale in designing this unit is introduced,which involves the teaching approach adopted and relevant theories in organizing the materials.Then,the teaching plan of this speaking unit is provided and some activities are designed to create an authentic and optimal situation for students to practice their speaking skill.
文摘Materials development has historically been driven by human needs and desires, and this is likely to con- tinue in the foreseeable future. The global population is expected to reach ten billion by 2050, which will promote increasingly large demands for clean and high-ef ciency energy, personalized consumer prod- ucts, secure food supplies, and professional healthcare. New functional materials that are made and tai- lored for targeted properties or behaviors will be the key to tackling this challenge. Traditionally, advanced materials are found empirically or through experimental trial-and-error approaches. As big data generated by modern experimental and computational techniques is becoming more readily avail- able, data-driven or machine learning (ML) methods have opened new paradigms for the discovery and rational design of materials. In this review article, we provide a brief introduction on various ML methods and related software or tools. Main ideas and basic procedures for employing ML approaches in materials research are highlighted. We then summarize recent important applications of ML for the large-scale screening and optimal design of polymer and porous materials, catalytic materials, and energetic mate- rials. Finally, concluding remarks and an outlook are provided.
基金financially supported by the National Natural Science Foundation of China (Grants Nos. 52064013, 52064014, 52072323 and 52122211)the “Double-First Class” Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University。
文摘Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.
基金the National Key Research and Development program of China(No.2017YFB 0702300)Fundamental Research Funds for the Central Universities(No.FRF-TP-18-002B2)National Natural Science Foundation of China(No.51671029)。
文摘AlSi10Mg fabricated by selective laser melting(SLM)had a unique network-like silicon-rich structure,and the mechanism for its formation was explained by molecular dynamics(MD)simulations.The effects of the silicon-rich phase and Mg-containing structure on corrosion were studied by first-principles methods.According to the simulations,corrosion resistant materials were designed,samples with laser powers of 150 W,200 W and 250 W were fabricated.The results indicated that a local thermal gradient during laser printing caused Si segregation,and the rapid cooling rate lead to a large number of subgrains,which assisted precipitation.The difference in potential caused galvanic corrosion,and a structure with low work function in the molten pool caused pitting.The corrosion resistance of materials processed with a high laser power increased.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.52272153,52032004)the KLOMT Key Laboratory Open Project(2022KLOMT02-05)。
文摘Light-to-thermal conversion materials(LTCMs)have been of great interest to researchers due to their impressive energy conversion capacity and wide range of applications in biomedical,desalination,and synergistic catalysis.Given the limited advances in existing materials(metals,semiconductors,π-conjugates),researchers generally adopt the method of constructing complex systems and hybrid structures to optimize performance and achieve multifunctional integration.However,the development of LTCMs is still in its infancy as the physical mechanism of light-to-thermal conversion is unclear.In this review,we proposed design strategies for efficient LTCMs by analyzing the physical process of light-tothermal conversion.First,we analyze the nature of light absorption and heat generation to reveal the physical processes of light-to-thermal conversion.Then,we explain the light-to-thermal conversion mechanisms of metallic,semiconducting andπ-conjugated LCTMs,and propose new material design strategies and performance improvement methods.Finally,we summarize the challenges and prospects of LTCMs in emerging applications such as solar water evaporation and photothermal catalysis.
基金financial supports from the National Key Research and Development Program of China(2018YFA0209600)the Natural Science Foundation of China(22022813,21878268,52075481)。
文摘With the widespread use of lithium ion batteries in portable electronics and electric vehicles,further improvements in the performance of lithium ion battery materials and accurate prediction of battery state are of increasing interest to battery researchers.Machine learning,one of the core technologies of artificial intelligence,is rapidly changing many fields with its ability to learn from historical data and solve complex tasks,and it has emerged as a new technique for solving current research problems in the field of lithium ion batteries.This review begins with the introduction of the conceptual framework of machine learning and the general process of its application,then reviews some of the progress made by machine learning in both improving battery materials design and accurate prediction of battery state,and finally points out the current application problems of machine learning and future research directions.It is believed that the use of machine learning will further promote the large-scale application and improvement of lithium-ion batteries.
基金Project supported by the National Natural Science Foundation of China(Grant No.51772321)the Beijing Science and Technology Project(Grant No.D171100005517001)+1 种基金the National Key Research and Development Plan(Grant No.2017YFB0701602)the Youth Innovation Promotion Association(Grant No.2016005)
文摘This paper reviews the rapid progress in the field of high-throughput modeling based on the Materials Genome Initiative, and its application in the discovery and design of lithium battery materials. It offers examples of screening, optimization and design of electrodes, electrolytes, coatings, additives, etc. and the possibility of introducing the machine learning method into material design. The application of the material genome method in the development of lithium battery materials provides the possibility to speed up the upgrading of new candidates in the discovery of lots of functional materials.
基金Project support by the National Natural Science Foundation of China(Grant Nos.11674237 and 51602211)the National Key Research and Development Program of China(Grant No.2016YFB0700700)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),ChinaChina Post-doctoral Foundation(Grant No.7131705619).
文摘Traditional materials discovery is in ‘trial-and-error’ mode, leading to the issues of low-efficiency, high-cost, and unsustainability in materials design. Meanwhile, numerous experimental and computational trials accumulate enormous quantities of data with multi-dimensionality and complexity, which might bury critical ‘structure–properties’ rules yet unfortunately not well explored. Machine learning(ML), as a burgeoning approach in materials science, may dig out the hidden structure–properties relationship from materials bigdata, therefore, has recently garnered much attention in materials science. In this review, we try to shortly summarize recent research progress in this field, following the ML paradigm:(i) data acquisition →(ii) feature engineering →(iii) algorithm →(iv) ML model →(v) model evaluation →(vi) application. In section of application, we summarize recent work by following the ‘material science tetrahedron’:(i) structure and composition →(ii) property →(iii) synthesis →(iv) characterization, in order to reveal the quantitative structure–property relationship and provide inverse design countermeasures. In addition, the concurrent challenges encompassing data quality and quantity, model interpretability and generalizability, have also been discussed. This review intends to provide a preliminary overview of ML from basic algorithms to applications.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11372038 and 11402023
文摘A simple uniaxial oedometric system is developed to test the elastic modulus of granular materials. The stress- strain relationship is first measured under conditions of uniaxial compression with additional lateral stress and strain, then the elastic modulus of the material is determined by the linear fitting method. It is found that the modulus is positively correlated to the grain size and negatively correlated to the container size. Arching and dragging are revealed to be the mechanism of such correlations by using the digital image correlation method and the pressure film technology based on the statistical method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12088101,11991060,12074029,52172136,and U1930402)。
文摘The growing worldwide energy needs call for developing novel materials for energy applications.Ab initio density functional theory(DFT)calculations allow the understanding and prediction of material properties at the atomic scale,thus,play an important role in energy materials design.Due to the fast progress of computer power and development of calculation methodologies,DFT-based calculations have greatly improved their predictive power,and are now leading to a paradigm shift towards theory-driven materials design.The aim of this perspective is to introduce the advances in DFT calculations which accelerate energy materials design.We first present state-of-the-art DFT methods for accurate simulation of various key properties of energy materials.Then we show examples of how these advances lead to the discovery of new energy materials for photovoltaic,photocatalytic,thermoelectric,and battery applications.The challenges and future research directions in computational design of energy materials are highlighted at the end.
文摘The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the corresponding specification.Suggestions were proposed and the modified.The real-coded Genetic Algorithm was given to deal with the problems of excessive computational cost and premature convergence.Software system of optimal design of deep jet method pile was developed.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA17040506)the National Natural Science Foundation of China(62005148/12004235)+2 种基金The Open Competition Mechanism to Select The Best Candidates Project in Jinzhong Science and Technology Bureau (J202101)the DNL Cooperation Fund CAS(DNL180311)the 111 Project (B14041)
文摘Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for material discovery and design.ML can be applied to discover new materials quickly and effectively,with significant savings in resources and time compared with traditional experiments and density functional theory(DFT)calculations.In this review,we present the application of ML in per-ovskites and briefly review the recent works in the field of ML-assisted perovskite design.Firstly,the advantages of perovskites in solar cells and the merits of ML applied to perovskites are discussed.Secondly,the workflow of ML in perovskite design and some basic ML algorithms are introduced.Thirdly,the applications of ML in predicting various properties of perovskite materials and devices are reviewed.Finally,we propose some prospects for the future development of this field.The rapid devel-opment of ML technology will largely promote the process of materials science,and ML will become an increasingly popular method for predicting the target properties of materials and devices.
基金supported by the International Collaboration Program of Jilin Provincial Department of Science and Technology,China(20230402051GH)the National Natural Science Foundation of China(51932003,51902050)+2 种基金the Open Project Program of Key Laboratory of Preparation and Application of Environmental friendly Materials(Jilin Normal University)of Ministry of China(2021006)the Fundamental Research Funds for the Central Universities JLU“Double-First Class”Discipline for Materials Science&Engineering。
文摘Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite new,fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance.Severe volume expansion,low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides,so that rational design and engineering are crucial to circumvent these disadvantages.Herein,this review provides an in-depth discussion of recent investigations and progresses of metal tellurides,beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs.In the following,recent design and engineering strategies of metal tellurides,including morphology engineering,compositing,defect engineering and heterostructure construction,for high-performance MBs are summarized.The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control,composition,electron configuration and structural complexity on the electrochemical performance.In closing,outlooks and prospects for future development of metal tellurides are proposed.This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost.
基金financially supported by the Technology Development Fund of China Academy of Machinery Science and Technology(No.170221ZY01)。
文摘Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.
文摘Based on the analyses of the severity of cutting process as well as the failure mechanisms of ceramic tools, a model for designing functionally gradient ceramic tool materials with symmetrical distribution is presented, by which a Al 2O 3/(W,Ti)C ceramic tool material FG 2 was developed. Multi objective optimization method was employed in designing the compositional distribution of this ceramic tool material. The results of both continuous and intermittent cutting tests are indicative of the much better cutting behavior of the functionally gradient ceramic tool FG 2 than that of the common ceramic tool SG 4.
文摘The world’s increasing population requires the process industry to produce food,fuels,chemicals,and consumer products in a more efficient and sustainable way.Functional process materials lie at the heart of this challenge.Traditionally,new advanced materials are found empirically or through trial-and-error approaches.As theoretical methods and associated tools are being continuously improved and computer power has reached a high level,it is now efficient and popular to use computational methods to guide material selection and design.Due to the strong interaction between material selection and the operation of the process in which the material is used,it is essential to perform material and process design simultaneously.Despite this significant connection,the solution of the integrated material and process design problem is not easy because multiple models at different scales are usually required.Hybrid modeling provides a promising option to tackle such complex design problems.In hybrid modeling,the material properties,which are computationally expensive to obtain,are described by data-driven models,while the well-known process-related principles are represented by mechanistic models.This article highlights the significance of hybrid modeling in multiscale material and process design.The generic design methodology is first introduced.Six important application areas are then selected:four from the chemical engineering field and two from the energy systems engineering domain.For each selected area,state-ofthe-art work using hybrid modeling for multiscale material and process design is discussed.Concluding remarks are provided at the end,and current limitations and future opportunities are pointed out.
基金supported by the National Natural Science Foundation of China (52072173)Jiangsu Province Outstanding Youth Fund (BK20200016)+1 种基金Jiangsu Specially-Appointed Professors ProgramLeading Edge Technology of Jiangsu Province (BK20202008)
文摘Simultaneously improving the energy density and power density of electrochemical energy storage systems is the ultimate goal of electrochemical energy storage technology.An effective strategy to achieve this goal is to take advantage of the high capacity and rapid kinetics of electrochemical proton storage to break through the power limit of batteries and the energy limit of capacitors.This article aims to review the research progress on the physicochemical properties,electrochemical performance,and reaction mechanisms of electrode materials for electrochemical proton storage.According to the different charge storage mechanisms,the surface redox,intercalation,and conversion materials are classified and introduced in detail,where the influence of crystal water and other nanostructures on the migration kinetics of protons is clarified.Several reported advanced full cell devices are summarized to promote the commercialization of electrochemical proton storage.Finally,this review provides a framework for research directions of charge storage mechanism,basic principles of material structure design,construction strategies of full cell device,and goals of practical application for electrochemical proton storage.