In order to restrict non-yielding maneuvers of left-turning vehicles,an optimal design of left-lane line extensions is proposed to solve the problem.A field observation was conducted to collect a data set of left-turn...In order to restrict non-yielding maneuvers of left-turning vehicles,an optimal design of left-lane line extensions is proposed to solve the problem.A field observation was conducted to collect a data set of left-turning vehicles at the beginning of a green phase at two similar intersections(one with a permitted phase and the other with a protected phase).The comparative analysis shows no significant difference in the speed distribution using either a permitted phase or a protected phase,but it reveals that a permitted phase can lead to a larger acceleration when the left-turn vehicles pass through the conflict points.Those indicate the existence of non-yielding maneuvers of left-turn vehicles at signalized intersections with a permitted phase.Optimal designed left-lane line extensions contain two types of segments,circular curves and transition curves,and they are only related to four geometry parameters of an intersection.The proposed method is easy to use and it can offer reference for intersection channelization and traffic organization.展开更多
Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and t...Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness.The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.Findings–The proposed model has a promising control effect under different geometric controlled conditions.Moreover,the proposed model performs robustly under various safety time headways,lengths of the CLL and green times of the main signal.Originality/value–This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections.The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness。展开更多
基金The National Natural Science Foundation of China(No.51278220)
文摘In order to restrict non-yielding maneuvers of left-turning vehicles,an optimal design of left-lane line extensions is proposed to solve the problem.A field observation was conducted to collect a data set of left-turning vehicles at the beginning of a green phase at two similar intersections(one with a permitted phase and the other with a protected phase).The comparative analysis shows no significant difference in the speed distribution using either a permitted phase or a protected phase,but it reveals that a permitted phase can lead to a larger acceleration when the left-turn vehicles pass through the conflict points.Those indicate the existence of non-yielding maneuvers of left-turn vehicles at signalized intersections with a permitted phase.Optimal designed left-lane line extensions contain two types of segments,circular curves and transition curves,and they are only related to four geometry parameters of an intersection.The proposed method is easy to use and it can offer reference for intersection channelization and traffic organization.
基金the National Natural Science Foundation of China under Grant No.71971140the Soft Science Research Project of Shanghai No.22692194500the Pujiang Program under Grant No.21PJC085.
文摘Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness.The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.Findings–The proposed model has a promising control effect under different geometric controlled conditions.Moreover,the proposed model performs robustly under various safety time headways,lengths of the CLL and green times of the main signal.Originality/value–This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections.The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness。