The earth pressure balance(EPB) shield cutterhead structure, which features an opening ratio and opening distribution as a core, seriously affects tunneling stability and tunneling efficiency. This paper presents a ne...The earth pressure balance(EPB) shield cutterhead structure, which features an opening ratio and opening distribution as a core, seriously affects tunneling stability and tunneling efficiency. This paper presents a new model for the soil using visco-plastic fluid theory, and then introduces the model into the computational-fluiddynamics model to comprehensively analyze the cutterhead structure, which consists of the soil, the cutterhead,the working chamber, and the screw conveyor. Based on this model, the stability situation and tunneling performance of multiple schemes of the cutting head structure are analyzed by changing the opening ratio and the opening distribution on the cutterhead. In this study, a new method for design and analysis of the EPB-shield cutterhead structure is proposed that fits changes in geologic conditions. The results will be helpful for engineers and manufacturers of more efficient machines and for carrying out tunneling projects with more stable EPB-shield cutterheads, and it will reduce the influences of changing geologic conditions during all stages of tunnel construction.展开更多
基金supported by the National Natural Science Foundation of China(51275339,2013CB035402)
文摘The earth pressure balance(EPB) shield cutterhead structure, which features an opening ratio and opening distribution as a core, seriously affects tunneling stability and tunneling efficiency. This paper presents a new model for the soil using visco-plastic fluid theory, and then introduces the model into the computational-fluiddynamics model to comprehensively analyze the cutterhead structure, which consists of the soil, the cutterhead,the working chamber, and the screw conveyor. Based on this model, the stability situation and tunneling performance of multiple schemes of the cutting head structure are analyzed by changing the opening ratio and the opening distribution on the cutterhead. In this study, a new method for design and analysis of the EPB-shield cutterhead structure is proposed that fits changes in geologic conditions. The results will be helpful for engineers and manufacturers of more efficient machines and for carrying out tunneling projects with more stable EPB-shield cutterheads, and it will reduce the influences of changing geologic conditions during all stages of tunnel construction.