The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The sp...The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption展开更多
The calculation of heat and humidity load serves as the cornerstone of Heating,Ventilation,and Air Conditioning(HVAC)design.Nevertheless,as the heat and humidity load characteristics of underground structures differ s...The calculation of heat and humidity load serves as the cornerstone of Heating,Ventilation,and Air Conditioning(HVAC)design.Nevertheless,as the heat and humidity load characteristics of underground structures differ substantially from those of above-ground structures,it is a challenge to derive their accurate calculation procedure through engineering experience.Therefore,it is particularly important to carry out quantitative research on heat and humidity load.This study used Design Builder software to study the influence of the design state point of air conditioning in underground buildings on energy consumption.The study showed that compared with the single design temperature of 18℃,setting the temperature of 16℃ in winter and 22℃ in summer could reduce energy consumption by about 59%.And the hourly heat load,cooling load and humidity load in one year are simulated and calculated so as to quantitatively analyze the characteristics of the load.This provides a database for selecting suitable HVAC equipment.It is further emphasized that dehumidification is the key to HVAC design of underground structures,which provides a reference for similar engineering designs.展开更多
基金The National Natural Science Foundation of China(No.51608426,51590913)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(No.(2014)1685)
文摘The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption
基金funded by theResearch Project of ChinaNorthwest Architecture Design and Research Institute Co.,Ltd.,“Simulation of Building Energy Consumption and Airflow Organization in Special Environment” (Grant Number:NB-2020-NT-03).
文摘The calculation of heat and humidity load serves as the cornerstone of Heating,Ventilation,and Air Conditioning(HVAC)design.Nevertheless,as the heat and humidity load characteristics of underground structures differ substantially from those of above-ground structures,it is a challenge to derive their accurate calculation procedure through engineering experience.Therefore,it is particularly important to carry out quantitative research on heat and humidity load.This study used Design Builder software to study the influence of the design state point of air conditioning in underground buildings on energy consumption.The study showed that compared with the single design temperature of 18℃,setting the temperature of 16℃ in winter and 22℃ in summer could reduce energy consumption by about 59%.And the hourly heat load,cooling load and humidity load in one year are simulated and calculated so as to quantitatively analyze the characteristics of the load.This provides a database for selecting suitable HVAC equipment.It is further emphasized that dehumidification is the key to HVAC design of underground structures,which provides a reference for similar engineering designs.