Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsor...Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsorbed on concentrate can damage ion-exchange resin and increase the chemical oxygen demand(COD)value of wastewater.In this work,we proposed a new scheme,i.e.,desorbing the collectors from concentrate in ore dressing plant and reusing them in flotation flowsheet.Lead nitrate and benzohydroxamic acid(Pb-BHA)complex is a common collector in scheelite flotation.In this study,different physical(stirring or ultrasonic waves)and chemical(strong acid or alkali environment)methods for facilitating the desorption of Pb-BHA collector from scheelite concentrate were explored.Single-mineral desorption tests showed that under the condition of pulp pH 13 and ultrasonic treatment for 15 min,the highest desorption rates of Pb and BHA from the scheelite concentrate were 90.48%and 63.75%,respectively.Run-of-mine ore flotation tests revealed that the reuse of desorbed Pb and BHA reduced the collector dosage by 30%for BHA and 25%for Pb.The strong alkali environment broke the chemical bonds between Pb and BHA.The cavitation effect of ultrasonic waves effectively reduced the interaction intensity between Pb-BHA collector and scheelite surfaces.This method combining ultrasonic waves and strong alkali environment can effectively desorb the collectors from concentrate and provide“clean”scheelite concentrate for metallurgic plants;the reuse of desorbed collector in flotation flowsheet can reduce reagent cost for ore dressing plants.展开更多
NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exh...NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exhibits strong stability and requires temperatures above 500℃ for hydrogen release in practical applications.In this study,two polyhydric alcohols,xylitol and erythritol(XE),were prepared as a binary eutectic sugar alcohol through a grinding-melting method.This binary eutectic sugar alcohol was used as a proton-hydrogen carrier to destabilize NaBH_(4).The 19NaBH_(4)-16XE composite material prepared by ball milling could start releasing hydrogen at 57.5℃,and the total hydrogen release can reach over 88.8%(4.45%(mass))of the theoretical capacity.When the 19NaBH_(4)-16XE composite was pressed into solid blocks,the volumetric hydrogen capacity of the block-shaped composite could reach 67.2 g·L^(–1).By controlling the temperature,the hydrogen desorption capacity of the NaBH_(4)-XE composite material was controllable,which has great potential for achieving solid-state hydrogen production from NaBH_(4).展开更多
We study the desorption mechanism of hydrogen isotopes from graphene surface using first-principles calculations,with focus on the effects of quantum tunneling.At low temperatures,quantum tunneling plays a dominant ro...We study the desorption mechanism of hydrogen isotopes from graphene surface using first-principles calculations,with focus on the effects of quantum tunneling.At low temperatures,quantum tunneling plays a dominant role in the desorption process of both hydrogen monomers and dimers.In the case of dimer desorption,two types of mechanisms,namely the traditional one-step desorption in the form of molecules(molecular mechanism),and the two-step desorption in the form of individual atoms(atomic mechanism),are studied and compared.For the ortho-dimers,the dominant desorption mechanism is found to switch from the molecular mechanism to the atomic mechanism above a critical temperature,which is∼300K and 200K for H and D,respectively.展开更多
Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate ...Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions.展开更多
The activity and adsorption behavior of oxygen on rutile TiO_(2)(110)(RTiO_(2)(110))were investigated using the temperature programmed desorption(TPD)method with methanol(CH_(3)OH)as the probe molecule.By controlling ...The activity and adsorption behavior of oxygen on rutile TiO_(2)(110)(RTiO_(2)(110))were investigated using the temperature programmed desorption(TPD)method with methanol(CH_(3)OH)as the probe molecule.By controlling the coverage of molecular O_(2)on the surface via increasing or decreasing O_(2)exposure,two chemisorbed O_(2)species on the surface are confirmed,one at the bridging oxygen vacancy(Ov)site(O_(2)^(2-)/Ov)and the other at the five-fold coordinated titanium(Ti_(5c))site(O^(2-)/Ti_(5c)).At low O_(2)exposure,O^(2-)/Ov is the main species on the surface,which only leads to the O-H bond cleavage of CH_(3)OH,producing methoxy groups(CHgO).However,after the Ov sites are nearly filled by O_(2)at about 0.1 L O_(2)exposure,O_(2)/Tisc species begins to appear on R-TiO_(2)(110)surface,resulting in the formation of formaldehyde(CH_(2)O)via the reaction of O_(2)/Tisc species with CH_(3)OH or CH3O to break the C-H bond at low surface temperature.Moreover,the yield of CH_(2)O increases linearly with that of H_(2)O.In addition,when the 1 L O_(2)covered surface is irradiated with 355 nm UV irradiation to desorb and dissociate O_(2)/Ti_(5c)species,the yield of CH_(2)O decreases linearly with that of H_(2)O.Further analysis suggests that the charge state of O_(2)/Ti_(5c)may not change as the exposure of O_(2)changes on the R-TiO_(2)(110)surface,and O_(2)is most likely to adsorb on the Ti_(5c)sites in the form of O_(2)^(2-),not O_(2)^(-),The result not only advances our understanding on the adsorption state of O_(2)on TiO_(2),but also provides clues for low temperature C-H bond activation with O_(2)on TiO_(2).展开更多
Cyclohexane is a high-valued chemical receivingsignificant interest in liquid hydrogen storage technology.TiO_(2)-based catalysts show high performance in the photocatalytic dehydrogenation of cyclohexane under mild c...Cyclohexane is a high-valued chemical receivingsignificant interest in liquid hydrogen storage technology.TiO_(2)-based catalysts show high performance in the photocatalytic dehydrogenation of cyclohexane under mild conditions,but the detailed reaction mechanism is not well understood.With the surface science approaches,we have studied the adsorption and surface chemistry of cyclohexane on rutile TiO_(2)(110).The thermal desorption spectroscopy and X-ray photoelectron spectroscopy results both demonstrate the molecular adsorption of cyclohexane on rutile TiO_(2)(110).Upon the UV Hg light irradiation,photodesorption of cyclohexane occurs from both the chemisorbed monolayer and the multilayer.No decomposition nor dehydrogenation of cyclohexane occurs on rutile TiO_(2)(110).These results deepen the fundamental understanding of the surface chemistry of cyclohexane on the TiO_(2)surface.展开更多
Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this...Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this further,desorption of the adsorbed gas due to pressure drop is investigated in this paper,to achieve an improved understanding of the long-term fate of injected CO_(2) during post-injection period.This paper presents a dual porosity model coupling gas flow,adsorption and geomechanics for studying coupled processes and effectiveness of CO_(2) sequestration in coals.A new adsorption?desorption model derived based on thermodynamics is incorporated,particularly,the desorption hysteresis is considered.The reliability of the proposed adsorption-desorption isotherm is examined via validation tests.It is indicated that occurrence of desorption hysteresis is attributed to the adsorption-induced pore deformation.After injection ceases,the injected gas continues to propagate further from the injection well,while the pressure in the vicinity of the injection well experiences a significant drop.Although the adsorbed gas near the well also decreases,this decrease is less compared to that in pressure because of desorption hysteresis.The unceasing spread of CO_(2) and drops of pressure and adsorbed gas depend on the degree of desorption hysteresis and heterogeneity of coals,which should be considered when designing CO_(2) sequestration into coal seams.展开更多
Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improv...Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improvement of HER performance.Here,we synthesized monodisperse hollow Mo_(2)C nanoreactors,in which the carbon dots(CD)were in situ formed onto the surface of Mo_(2)C through carburization reactions.According to finite element simulation and analysis,the CD@Mo_(2)C possesses better mesoscale diffusion properties than Mo_(2)C alone.The optimized CD@Mo_(2)C nanoreactor demonstrates superior HER performance in alkaline electrolyte with a low overpotential of 57 mV at 10 mA cm^(−2),which is better than most Mo_(2)C-based electrocatalysts.Moreover,CD@Mo_(2)C exhibits excellent electrochemical stability during 240 h,confirmed by operando Raman and X-ray diffraction(XRD).Density functional theory(DFT)calculations show that carbon dots cause the d-band center of CD@Mo_(2)C to shift away from Fermi level,promoting water dissociation and the desorption of H^(*).This study provides a reasonable strategy towards high-activity Mo-based HER eletrocatalysts by modulating the strength of Mo–H bonds.展开更多
Rationale:Nocardia is a soil saprophyte,which can cause disseminated infection in immunocompromised patients.Early diagnosis and treatment can greatly improve prognosis.Patient concern:A 26-year-old male presented wit...Rationale:Nocardia is a soil saprophyte,which can cause disseminated infection in immunocompromised patients.Early diagnosis and treatment can greatly improve prognosis.Patient concern:A 26-year-old male presented with repeated episodes of fever,cough and breathlessness for 3 months.Diagnosis:Mixed infection of Nocardia(N.)farcinica and N.cyriacigeorgica with diabetes and Cushing’s syndrome.Interventions:N.cyriacigeorgica was isolated from empyema fluid and N.farcinica from blood.Based on antimicrobial susceptibility,he was treated with imipenem,cotrimoxazole and amikacin.Outcome:Patient expired due to infection and delayed diagnosis.Lesson:Several cases of infection due to N.farcinica or N.cyriacigeorgica have been reported.But mixed infection caused by these two species is rare.Pulmonary and disseminated nocardiosis is associated with high mortality,especially in immunocompromised hosts.So early diagnosis and prompt treatment is needed.展开更多
Magnesium hydride is one of the most promising solid-state hydrogen storage materials for on-board application.Hydrogen desorption from MgH_(2) is accompanied by the formation of the Mg/MgH_(2) interfaces,which may pl...Magnesium hydride is one of the most promising solid-state hydrogen storage materials for on-board application.Hydrogen desorption from MgH_(2) is accompanied by the formation of the Mg/MgH_(2) interfaces,which may play a key role in the further dehydrogenation process.In this work,first-principles calculations have been used to understand the dehydrogenation properties of the Mg(0001)/MgH_(2)(110) interface.It is found that the Mg(0001)/MgH_(2)(110) interface can weaken the Mg-H bond.The removal energies for hydrogen atoms in the interface zone are significantly lower compared to those of bulk MgH_(2).In terms of H mobility,hydrogen diffusion within the interface as well as into the Mg matrix is considered.The calculated energy barriers reveal that the migration of hydrogen atoms in the interface zone is easier than that in the bulk MgH_(2).Based on the hydrogen removal energies and diffusion barriers,we conclude that the formation of the Mg(0001)/MgH_(2)(110) interface facilitates the dehydrogenation process of magnesium hydride.展开更多
This study examines the impact of different CO<sub>2</sub> injection methods on coalbed methane recovery. Specifically, this study investigated the effectiveness of continuously injecting CO<sub>2<...This study examines the impact of different CO<sub>2</sub> injection methods on coalbed methane recovery. Specifically, this study investigated the effectiveness of continuously injecting CO<sub>2</sub> versus injecting CO<sub>2</sub> that had been soaked for two weeks. The objective was to ascertain which approach was more successful in enhancing CO<sub>2</sub> Enhanced coalbed Methane (CO<sub>2</sub>-ECBM). The experiment involved injecting 3 MPa of CH<sub>4</sub> into dry coal samples, allowing it to adsorb until reaching equilibrium, and then injecting 5 MPa of CO<sub>2</sub> to recover adsorbed CH<sub>4</sub>. The continuous method recovered CH<sub>4</sub> without detectable effluent concentration for 5 hours, but desorption efficiency was only 26% due to fast flow. On the other hand, the desorption efficiency of the cyclic method was only 12%, indicating trapped CH<sub>4</sub>. A comparison of desorption efficiency per unit of time shows the continuous method is more effective than the cyclic method. The results of this study demonstrate the continuous method is more effective for the desorption of CH<sub>4</sub>, and its efficiency can be improved by briefly soaking CO<sub>2</sub> on coal and then reinjecting it to maximize CH<sub>4</sub> recovery. It is advisable to limit the soaking time to prevent excessive swelling of the coal matrix, which can hinder seam flow and harm long-term gas production.展开更多
Ionic liquid (IL) trihexyl (tetradecyl) phosphonium bis 2,4,4-trimethylpentylphosphinate (Cyphos IL 104) was impregnated on XAD-7 resin. The solvent impreganated resin (SIR) was prepared and applied in Cr(VI) removal....Ionic liquid (IL) trihexyl (tetradecyl) phosphonium bis 2,4,4-trimethylpentylphosphinate (Cyphos IL 104) was impregnated on XAD-7 resin. The solvent impreganated resin (SIR) was prepared and applied in Cr(VI) removal. The morphology and the thermal stability of the resins were explored. The effects of equilibrium time and initial pH value on Cr(VI) adsorption were investigated. Adsorption isotherm, separation and desorption of the SIR, and selectivity of SIR were also explored. The results show that Cyphos IL 104 exists in the inner XAD-7 resin, and the optimum pH value range of the SIR for Cr(VI) extraction is 0 to 2. When NaOH used as desorption solution, the Cr(VI) can be effectively desorbed from the SIR.展开更多
The Cr(III) desorption experiments of Gaomiaozi (GMZ) bentonite in aqueous solutions were performed. The variables affecting the desorption behaviors, such as contact time, concentration of the desorbent, pH value...The Cr(III) desorption experiments of Gaomiaozi (GMZ) bentonite in aqueous solutions were performed. The variables affecting the desorption behaviors, such as contact time, concentration of the desorbent, pH value of the solution, temperature and desorption isotherms, were investigated by the batch experiments. The results show that the adsorbed Cr(III) on GMZ bentonite can be easily extracted by the desorbent. Kinetics examination shows that desorption is slower than adsorption, and the desorption rate increases with time and reaches the equilibrium after 3 h. The final desorption ratios of Cr(III) are 89.4%, 56.5%and 77.2%in the desorption solution with 0.1 mol/L HCl, 1 mol/L NaCl, and 1 mol/L CaCl2, respectively, and the concentration can promote the desorption progress. Furthermore, the results of successive regeneration cycles indicate that the bentonite has a good regeneration ability and reusability. The pH value is an important factor in the Cr(III) desorption from the GMZ bentonite. The results of adsorption and desorption isotherms show that both adsorption and desorption isotherms are consistent with the Freundlich equation. The comparison of adsorption and desorption isotherms implies that the adsorption/desorption hysteresis is negligible and the transport of Cr(III) in bentonite can be described by a reversible adsorption process.展开更多
Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the a...Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the adsorption mechanism and the relationship between oxidation state and adsorption performance were studied with the characterization of Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),pH tracking and energy calculation.The results show that the adsorption performance in acidic solution is improved with the decrease of oxidation state of poly(m-phenylenediamine)(PmPD).The rate constant is as high as 425.5 mg/(g·min) in the short equilibrium time of 30 min.The estimated highest adsorptivity of sulfate ions is 95.1%.According to the Langmuir equation,the adsorbance is 108.5 mg/g.The sulfate desorption efficiency is about 95% and the accumulative adsorbance is up to 487.95 mg/g in 5 cycles.展开更多
[Objective]The aim of this paper was to provide theoretical basis for study on enhancement of surfactants to desorption of PCBs from soil. [Method]The desorption effects of surfactants SDBs,Tween 80,HTAB on PCBs were ...[Objective]The aim of this paper was to provide theoretical basis for study on enhancement of surfactants to desorption of PCBs from soil. [Method]The desorption effects of surfactants SDBs,Tween 80,HTAB on PCBs were studied as well as their distribution in water and soil. Effects of rationing on desorption of PCBs were also analyzed. [Result]The potential of single surfactant to enhance the desorption of PCBs from soil in order was Tween 80 SDBS HTAB. Three surfactants were largely adsorbed on soil and the sorption followed HTABTween 80SDBS. The desorption of PCBs increased significantly and linearly with the increase of aqueous micelle concentration of surfactants. [Conclusion]Enhancing effect of three surfactants on PCBs desorption were obtained,which will provide theoretical basis for further analyzing.展开更多
By means of the synthetic approach of non-polar or weak polar oil-sorbed polymers,the gel sorption resin(GSR) and the multiporous sorption resin(MSR) were prepared.The structure of the resins,sorption power...By means of the synthetic approach of non-polar or weak polar oil-sorbed polymers,the gel sorption resin(GSR) and the multiporous sorption resin(MSR) were prepared.The structure of the resins,sorption power,sorption speed,desorption,and sorption of organic compounds from sewage,exhaust gas and soil were discussed.Moreover,the resins were used to decrease LOD and BOD5 values of water waste from sewage factory.Theyare a klndof potential materials for environmental control.展开更多
A direct determination method for the atrazine residue on the vegetable was developed by using desorption electrospray ionization mass spectrometry (DESI MS) without any sample pretreatment.Acetonitrile-water (1:1,v/v...A direct determination method for the atrazine residue on the vegetable was developed by using desorption electrospray ionization mass spectrometry (DESI MS) without any sample pretreatment.Acetonitrile-water (1:1,v/v),which contained 0.1% formic acid,was used as the spray solvent.The working conditions,such as ESI gas inlet pressure,ESI flow rate,ESI spray voltage,spray-to-sample distance,spray-to-cone-hole distance and the collision induced dissociation (CID) voltage for MS/MS,were optimized for both DESI and esquires 6 000 mass spectrometer.The linear range of atrazine on cabbage leaves was 25.25-2 525 pg/mm2,the R2 was 0.991 6,and the relative standard deviations were between 3.37% and 26.17%.The LOD of atrazine calculated by S/N=3 was 2.50 pg/mm2.展开更多
The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was appli...The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was applied to analyzing the kinetics behavior of Mg-Ni hydride. The calculation results show that the theoretical value and the experimental data can reach a good agreement, especially in the case of non-isothermal dehydriding. The rate-controlling step is the diffusion of hydrogen atoms in the solid solution. The sample prepared under magnetic field of 6 T under the isothermal condition can reach the best performance. The similar tendency was observed under the non-isothermal condition and the reason was discussed.展开更多
[Objective]The research aimed to provide scientific reference for reasonable utilization of polyacrylamide(PAM).[Method]After PAM treatment,the soil aggregates were classified through dry sieve analysis and the adsorp...[Objective]The research aimed to provide scientific reference for reasonable utilization of polyacrylamide(PAM).[Method]After PAM treatment,the soil aggregates were classified through dry sieve analysis and the adsorption capacity and desorption capacity of all soil aggregates to phosphorus at different phosphorus concentrations were analyzed.[Result] The phosphorus adsorption and desorption of soil sample treated by PAM declined. The amount of phosphorus adsorption increased with the increase of phosphorus concentration and this increase was fast in low phosphorus concentration area but slow in high phosphorus concentration area.At different phosphorus concentrations,adsorption showed a へ shape changing trend.The phosphorus adsorption was related to phosphorus concentration and the 2-3 mm aggregate had the highest desorption rate while 0.1-0.25 mm aggregate and 0.45-1 mm aggregate had lowest desorption rate.[Conclusion]The PAM treatment generated significant influence on phosphorus adsorption and analytic features of aggregate in all size fractions.展开更多
A thermal desorption method for analysis of the volatile components on carbon particles,which were produced by the combustion of diesel oil,has been developed.The collection equipment of carbon particles was designed ...A thermal desorption method for analysis of the volatile components on carbon particles,which were produced by the combustion of diesel oil,has been developed.The collection equipment of carbon particles was designed and the pyrolysis instrument was used as the thermal desorption equipment.The collected carbon particles were injected into the pyrolysis instrument and desorbed at the temperature of 700 ℃.All the volatile components were analyzed by gas chromatography-mass spectrometry(GC-MS).The results showed that the volatile component on carbon particle could be rapidly analyzed.The method provided a guidance to the further research of the burning behaviors of the diesel oil.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52304314 and U23A20602)the Leading Talents of S&T Innovation of Hunan Province,China(No.2021RC4002)+2 种基金the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2024-16)the Open Foundation of Key Laboratory of Green Separation and Enrichment of Strategic Metal Mineral Resources(No.2023-02)the Fundamental Research Funds for the Central Universities of Central South University(No.2024ZZTS0008).
文摘Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsorbed on concentrate can damage ion-exchange resin and increase the chemical oxygen demand(COD)value of wastewater.In this work,we proposed a new scheme,i.e.,desorbing the collectors from concentrate in ore dressing plant and reusing them in flotation flowsheet.Lead nitrate and benzohydroxamic acid(Pb-BHA)complex is a common collector in scheelite flotation.In this study,different physical(stirring or ultrasonic waves)and chemical(strong acid or alkali environment)methods for facilitating the desorption of Pb-BHA collector from scheelite concentrate were explored.Single-mineral desorption tests showed that under the condition of pulp pH 13 and ultrasonic treatment for 15 min,the highest desorption rates of Pb and BHA from the scheelite concentrate were 90.48%and 63.75%,respectively.Run-of-mine ore flotation tests revealed that the reuse of desorbed Pb and BHA reduced the collector dosage by 30%for BHA and 25%for Pb.The strong alkali environment broke the chemical bonds between Pb and BHA.The cavitation effect of ultrasonic waves effectively reduced the interaction intensity between Pb-BHA collector and scheelite surfaces.This method combining ultrasonic waves and strong alkali environment can effectively desorb the collectors from concentrate and provide“clean”scheelite concentrate for metallurgic plants;the reuse of desorbed collector in flotation flowsheet can reduce reagent cost for ore dressing plants.
基金support from the National Natural Science Foundation of China(52201255)the Natural Science Foundation of Jiangsu Province(BK20210884)the Innovation,and Entrepreneurship Program of Jiangsu Province(JSSCBS20211007).
文摘NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exhibits strong stability and requires temperatures above 500℃ for hydrogen release in practical applications.In this study,two polyhydric alcohols,xylitol and erythritol(XE),were prepared as a binary eutectic sugar alcohol through a grinding-melting method.This binary eutectic sugar alcohol was used as a proton-hydrogen carrier to destabilize NaBH_(4).The 19NaBH_(4)-16XE composite material prepared by ball milling could start releasing hydrogen at 57.5℃,and the total hydrogen release can reach over 88.8%(4.45%(mass))of the theoretical capacity.When the 19NaBH_(4)-16XE composite was pressed into solid blocks,the volumetric hydrogen capacity of the block-shaped composite could reach 67.2 g·L^(–1).By controlling the temperature,the hydrogen desorption capacity of the NaBH_(4)-XE composite material was controllable,which has great potential for achieving solid-state hydrogen production from NaBH_(4).
基金financially supported by the National Natural Science Foundation of China(Grant Nos.12074382 and 11474285).
文摘We study the desorption mechanism of hydrogen isotopes from graphene surface using first-principles calculations,with focus on the effects of quantum tunneling.At low temperatures,quantum tunneling plays a dominant role in the desorption process of both hydrogen monomers and dimers.In the case of dimer desorption,two types of mechanisms,namely the traditional one-step desorption in the form of molecules(molecular mechanism),and the two-step desorption in the form of individual atoms(atomic mechanism),are studied and compared.For the ortho-dimers,the dominant desorption mechanism is found to switch from the molecular mechanism to the atomic mechanism above a critical temperature,which is∼300K and 200K for H and D,respectively.
基金supported by CNPC-CZU Innovation Alliancethe Research Start-Up Fund of Changzhou University.
文摘Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions.
基金This work was supported by the National Natural Science Foundation of China(No.21973010)Liaoning Revitalization Talents Program(No.XLYC1907032)The authors thank Qing Guo at Southern University of Science and Technolog for many insightful discussions。
文摘The activity and adsorption behavior of oxygen on rutile TiO_(2)(110)(RTiO_(2)(110))were investigated using the temperature programmed desorption(TPD)method with methanol(CH_(3)OH)as the probe molecule.By controlling the coverage of molecular O_(2)on the surface via increasing or decreasing O_(2)exposure,two chemisorbed O_(2)species on the surface are confirmed,one at the bridging oxygen vacancy(Ov)site(O_(2)^(2-)/Ov)and the other at the five-fold coordinated titanium(Ti_(5c))site(O^(2-)/Ti_(5c)).At low O_(2)exposure,O^(2-)/Ov is the main species on the surface,which only leads to the O-H bond cleavage of CH_(3)OH,producing methoxy groups(CHgO).However,after the Ov sites are nearly filled by O_(2)at about 0.1 L O_(2)exposure,O_(2)/Tisc species begins to appear on R-TiO_(2)(110)surface,resulting in the formation of formaldehyde(CH_(2)O)via the reaction of O_(2)/Tisc species with CH_(3)OH or CH3O to break the C-H bond at low surface temperature.Moreover,the yield of CH_(2)O increases linearly with that of H_(2)O.In addition,when the 1 L O_(2)covered surface is irradiated with 355 nm UV irradiation to desorb and dissociate O_(2)/Ti_(5c)species,the yield of CH_(2)O decreases linearly with that of H_(2)O.Further analysis suggests that the charge state of O_(2)/Ti_(5c)may not change as the exposure of O_(2)changes on the R-TiO_(2)(110)surface,and O_(2)is most likely to adsorb on the Ti_(5c)sites in the form of O_(2)^(2-),not O_(2)^(-),The result not only advances our understanding on the adsorption state of O_(2)on TiO_(2),but also provides clues for low temperature C-H bond activation with O_(2)on TiO_(2).
基金This work is supported by the National Natural Science Foundation of China(No.22202191).
文摘Cyclohexane is a high-valued chemical receivingsignificant interest in liquid hydrogen storage technology.TiO_(2)-based catalysts show high performance in the photocatalytic dehydrogenation of cyclohexane under mild conditions,but the detailed reaction mechanism is not well understood.With the surface science approaches,we have studied the adsorption and surface chemistry of cyclohexane on rutile TiO_(2)(110).The thermal desorption spectroscopy and X-ray photoelectron spectroscopy results both demonstrate the molecular adsorption of cyclohexane on rutile TiO_(2)(110).Upon the UV Hg light irradiation,photodesorption of cyclohexane occurs from both the chemisorbed monolayer and the multilayer.No decomposition nor dehydrogenation of cyclohexane occurs on rutile TiO_(2)(110).These results deepen the fundamental understanding of the surface chemistry of cyclohexane on the TiO_(2)surface.
基金The research was conducted as part of the“Establishing a Research Observatory to Unlock European Coal Seams for CO_(2) Storage(ROCCS)”project(Grant No.899336)The work of the second author is also sponsored by Shanghai Pujiang Program(Grant No.23PJ1412600)。
文摘Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this further,desorption of the adsorbed gas due to pressure drop is investigated in this paper,to achieve an improved understanding of the long-term fate of injected CO_(2) during post-injection period.This paper presents a dual porosity model coupling gas flow,adsorption and geomechanics for studying coupled processes and effectiveness of CO_(2) sequestration in coals.A new adsorption?desorption model derived based on thermodynamics is incorporated,particularly,the desorption hysteresis is considered.The reliability of the proposed adsorption-desorption isotherm is examined via validation tests.It is indicated that occurrence of desorption hysteresis is attributed to the adsorption-induced pore deformation.After injection ceases,the injected gas continues to propagate further from the injection well,while the pressure in the vicinity of the injection well experiences a significant drop.Although the adsorbed gas near the well also decreases,this decrease is less compared to that in pressure because of desorption hysteresis.The unceasing spread of CO_(2) and drops of pressure and adsorbed gas depend on the degree of desorption hysteresis and heterogeneity of coals,which should be considered when designing CO_(2) sequestration into coal seams.
基金financially supported by the National Natural Science Foundation of China (22372001)Starting Fund for Scientific Research of High-Level Talents, Anhui Agricultural University (rc382108)+1 种基金Anhui Provincial Key Research and Development Plan (2022e07020037)Innovation and Entrepreneurship Training Program for College Students (X202310364204, S202210364046, X202310364209)
文摘Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improvement of HER performance.Here,we synthesized monodisperse hollow Mo_(2)C nanoreactors,in which the carbon dots(CD)were in situ formed onto the surface of Mo_(2)C through carburization reactions.According to finite element simulation and analysis,the CD@Mo_(2)C possesses better mesoscale diffusion properties than Mo_(2)C alone.The optimized CD@Mo_(2)C nanoreactor demonstrates superior HER performance in alkaline electrolyte with a low overpotential of 57 mV at 10 mA cm^(−2),which is better than most Mo_(2)C-based electrocatalysts.Moreover,CD@Mo_(2)C exhibits excellent electrochemical stability during 240 h,confirmed by operando Raman and X-ray diffraction(XRD).Density functional theory(DFT)calculations show that carbon dots cause the d-band center of CD@Mo_(2)C to shift away from Fermi level,promoting water dissociation and the desorption of H^(*).This study provides a reasonable strategy towards high-activity Mo-based HER eletrocatalysts by modulating the strength of Mo–H bonds.
文摘Rationale:Nocardia is a soil saprophyte,which can cause disseminated infection in immunocompromised patients.Early diagnosis and treatment can greatly improve prognosis.Patient concern:A 26-year-old male presented with repeated episodes of fever,cough and breathlessness for 3 months.Diagnosis:Mixed infection of Nocardia(N.)farcinica and N.cyriacigeorgica with diabetes and Cushing’s syndrome.Interventions:N.cyriacigeorgica was isolated from empyema fluid and N.farcinica from blood.Based on antimicrobial susceptibility,he was treated with imipenem,cotrimoxazole and amikacin.Outcome:Patient expired due to infection and delayed diagnosis.Lesson:Several cases of infection due to N.farcinica or N.cyriacigeorgica have been reported.But mixed infection caused by these two species is rare.Pulmonary and disseminated nocardiosis is associated with high mortality,especially in immunocompromised hosts.So early diagnosis and prompt treatment is needed.
基金support by the National Natural Science Foundation of China under Grant No.U20A20237 and the High Performance Computing Center of Central South University are gratefully acknowledged.
文摘Magnesium hydride is one of the most promising solid-state hydrogen storage materials for on-board application.Hydrogen desorption from MgH_(2) is accompanied by the formation of the Mg/MgH_(2) interfaces,which may play a key role in the further dehydrogenation process.In this work,first-principles calculations have been used to understand the dehydrogenation properties of the Mg(0001)/MgH_(2)(110) interface.It is found that the Mg(0001)/MgH_(2)(110) interface can weaken the Mg-H bond.The removal energies for hydrogen atoms in the interface zone are significantly lower compared to those of bulk MgH_(2).In terms of H mobility,hydrogen diffusion within the interface as well as into the Mg matrix is considered.The calculated energy barriers reveal that the migration of hydrogen atoms in the interface zone is easier than that in the bulk MgH_(2).Based on the hydrogen removal energies and diffusion barriers,we conclude that the formation of the Mg(0001)/MgH_(2)(110) interface facilitates the dehydrogenation process of magnesium hydride.
文摘This study examines the impact of different CO<sub>2</sub> injection methods on coalbed methane recovery. Specifically, this study investigated the effectiveness of continuously injecting CO<sub>2</sub> versus injecting CO<sub>2</sub> that had been soaked for two weeks. The objective was to ascertain which approach was more successful in enhancing CO<sub>2</sub> Enhanced coalbed Methane (CO<sub>2</sub>-ECBM). The experiment involved injecting 3 MPa of CH<sub>4</sub> into dry coal samples, allowing it to adsorb until reaching equilibrium, and then injecting 5 MPa of CO<sub>2</sub> to recover adsorbed CH<sub>4</sub>. The continuous method recovered CH<sub>4</sub> without detectable effluent concentration for 5 hours, but desorption efficiency was only 26% due to fast flow. On the other hand, the desorption efficiency of the cyclic method was only 12%, indicating trapped CH<sub>4</sub>. A comparison of desorption efficiency per unit of time shows the continuous method is more effective than the cyclic method. The results of this study demonstrate the continuous method is more effective for the desorption of CH<sub>4</sub>, and its efficiency can be improved by briefly soaking CO<sub>2</sub> on coal and then reinjecting it to maximize CH<sub>4</sub> recovery. It is advisable to limit the soaking time to prevent excessive swelling of the coal matrix, which can hinder seam flow and harm long-term gas production.
基金Project (51174184) sponsored by the National Natural Science Foundation of ChinaProject (2012CBA01202) supported by the National Basic Research Program of ChinaProject (KGZD-EW-201-1) supported by the Key Research Program of the Chinese Academy of Sciences
文摘Ionic liquid (IL) trihexyl (tetradecyl) phosphonium bis 2,4,4-trimethylpentylphosphinate (Cyphos IL 104) was impregnated on XAD-7 resin. The solvent impreganated resin (SIR) was prepared and applied in Cr(VI) removal. The morphology and the thermal stability of the resins were explored. The effects of equilibrium time and initial pH value on Cr(VI) adsorption were investigated. Adsorption isotherm, separation and desorption of the SIR, and selectivity of SIR were also explored. The results show that Cyphos IL 104 exists in the inner XAD-7 resin, and the optimum pH value range of the SIR for Cr(VI) extraction is 0 to 2. When NaOH used as desorption solution, the Cr(VI) can be effectively desorbed from the SIR.
基金Project(41272287)supported by the National Natural Science Foundation of ChinaProject(13PJD029)supported by Shanghai Pujiang ProgramProject(SKLGDUEK1202)supported by State Key Laboratory for GeoMechanics and Deep Underground Engineering,China
文摘The Cr(III) desorption experiments of Gaomiaozi (GMZ) bentonite in aqueous solutions were performed. The variables affecting the desorption behaviors, such as contact time, concentration of the desorbent, pH value of the solution, temperature and desorption isotherms, were investigated by the batch experiments. The results show that the adsorbed Cr(III) on GMZ bentonite can be easily extracted by the desorbent. Kinetics examination shows that desorption is slower than adsorption, and the desorption rate increases with time and reaches the equilibrium after 3 h. The final desorption ratios of Cr(III) are 89.4%, 56.5%and 77.2%in the desorption solution with 0.1 mol/L HCl, 1 mol/L NaCl, and 1 mol/L CaCl2, respectively, and the concentration can promote the desorption progress. Furthermore, the results of successive regeneration cycles indicate that the bentonite has a good regeneration ability and reusability. The pH value is an important factor in the Cr(III) desorption from the GMZ bentonite. The results of adsorption and desorption isotherms show that both adsorption and desorption isotherms are consistent with the Freundlich equation. The comparison of adsorption and desorption isotherms implies that the adsorption/desorption hysteresis is negligible and the transport of Cr(III) in bentonite can be described by a reversible adsorption process.
基金Project(50925417) supported by China National Funds for Distinguished Young ScientistsProject(50830301) supported by the National Natural Science Foundation of China+1 种基金Project(2009ZX07212-001-01) supported by Major Science and Technology Program for Water Pollution Control and Treatment of ChinaProject(2011) supported by Hunan Nonferrous Fundamental Research Fund
文摘Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the adsorption mechanism and the relationship between oxidation state and adsorption performance were studied with the characterization of Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),pH tracking and energy calculation.The results show that the adsorption performance in acidic solution is improved with the decrease of oxidation state of poly(m-phenylenediamine)(PmPD).The rate constant is as high as 425.5 mg/(g·min) in the short equilibrium time of 30 min.The estimated highest adsorptivity of sulfate ions is 95.1%.According to the Langmuir equation,the adsorbance is 108.5 mg/g.The sulfate desorption efficiency is about 95% and the accumulative adsorbance is up to 487.95 mg/g in 5 cycles.
基金Supported by the National Natural Science Fund (20947003)~~
文摘[Objective]The aim of this paper was to provide theoretical basis for study on enhancement of surfactants to desorption of PCBs from soil. [Method]The desorption effects of surfactants SDBs,Tween 80,HTAB on PCBs were studied as well as their distribution in water and soil. Effects of rationing on desorption of PCBs were also analyzed. [Result]The potential of single surfactant to enhance the desorption of PCBs from soil in order was Tween 80 SDBS HTAB. Three surfactants were largely adsorbed on soil and the sorption followed HTABTween 80SDBS. The desorption of PCBs increased significantly and linearly with the increase of aqueous micelle concentration of surfactants. [Conclusion]Enhancing effect of three surfactants on PCBs desorption were obtained,which will provide theoretical basis for further analyzing.
文摘By means of the synthetic approach of non-polar or weak polar oil-sorbed polymers,the gel sorption resin(GSR) and the multiporous sorption resin(MSR) were prepared.The structure of the resins,sorption power,sorption speed,desorption,and sorption of organic compounds from sewage,exhaust gas and soil were discussed.Moreover,the resins were used to decrease LOD and BOD5 values of water waste from sewage factory.Theyare a klndof potential materials for environmental control.
文摘A direct determination method for the atrazine residue on the vegetable was developed by using desorption electrospray ionization mass spectrometry (DESI MS) without any sample pretreatment.Acetonitrile-water (1:1,v/v),which contained 0.1% formic acid,was used as the spray solvent.The working conditions,such as ESI gas inlet pressure,ESI flow rate,ESI spray voltage,spray-to-sample distance,spray-to-cone-hole distance and the collision induced dissociation (CID) voltage for MS/MS,were optimized for both DESI and esquires 6 000 mass spectrometer.The linear range of atrazine on cabbage leaves was 25.25-2 525 pg/mm2,the R2 was 0.991 6,and the relative standard deviations were between 3.37% and 26.17%.The LOD of atrazine calculated by S/N=3 was 2.50 pg/mm2.
基金Project(51464008) supported by the National Natural Science Foundation of ChinaProject(KY[2012]004) supported by the Key Laboratory Item of Education Office in Guizhou Province,China
文摘The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was applied to analyzing the kinetics behavior of Mg-Ni hydride. The calculation results show that the theoretical value and the experimental data can reach a good agreement, especially in the case of non-isothermal dehydriding. The rate-controlling step is the diffusion of hydrogen atoms in the solid solution. The sample prepared under magnetic field of 6 T under the isothermal condition can reach the best performance. The similar tendency was observed under the non-isothermal condition and the reason was discussed.
文摘[Objective]The research aimed to provide scientific reference for reasonable utilization of polyacrylamide(PAM).[Method]After PAM treatment,the soil aggregates were classified through dry sieve analysis and the adsorption capacity and desorption capacity of all soil aggregates to phosphorus at different phosphorus concentrations were analyzed.[Result] The phosphorus adsorption and desorption of soil sample treated by PAM declined. The amount of phosphorus adsorption increased with the increase of phosphorus concentration and this increase was fast in low phosphorus concentration area but slow in high phosphorus concentration area.At different phosphorus concentrations,adsorption showed a へ shape changing trend.The phosphorus adsorption was related to phosphorus concentration and the 2-3 mm aggregate had the highest desorption rate while 0.1-0.25 mm aggregate and 0.45-1 mm aggregate had lowest desorption rate.[Conclusion]The PAM treatment generated significant influence on phosphorus adsorption and analytic features of aggregate in all size fractions.
文摘A thermal desorption method for analysis of the volatile components on carbon particles,which were produced by the combustion of diesel oil,has been developed.The collection equipment of carbon particles was designed and the pyrolysis instrument was used as the thermal desorption equipment.The collected carbon particles were injected into the pyrolysis instrument and desorbed at the temperature of 700 ℃.All the volatile components were analyzed by gas chromatography-mass spectrometry(GC-MS).The results showed that the volatile component on carbon particle could be rapidly analyzed.The method provided a guidance to the further research of the burning behaviors of the diesel oil.