The Bohai Sea is a Late Mesozoic-Cenozoic feature of the basin-mountain system located in eastern North China Craton (NCC). The Late Mesozoic thinning of the lithosphere signals the early destruction of the NCC. The...The Bohai Sea is a Late Mesozoic-Cenozoic feature of the basin-mountain system located in eastern North China Craton (NCC). The Late Mesozoic thinning of the lithosphere signals the early destruction of the NCC. The onset of the destruction was due to the delamination of thick lithosphere of the craton, represented by the NW- trending grabens in an en-echelon arrangement west to Tanlu Fault, and by the NNE-trending grabens within the Tanlu Fault Zone. The Late Mesozoic NW-trending grabens are overprinted by structures related to the Cenozoic NE-trending pull-apart basin with very thick Mesozoic-Cenozoic sediments in the eastern NCC. C- frequency diagrams of growth faults and the extension factor (fl) of four sections across the basin suggest that the extension migrated from the margin to the center of Bohai Sea, and that the Mesozoic and Cenozoic extension factors for Bohai Sea are higher than that of the margin. These evidences suggest that the greatest extension occurred in the center of Bohai Sea, which is consistent with the thinnest crust being found in the center of the sea. The extension ratios and tectonic evolution of the Bohai Sea suggest that it is the key region for the destruction of the NCC, as evidenced by the topography. However, the NCC experienced two stages of destruction with the late stage related to the tectonic regime of Northeast Asia.展开更多
The Early Cretaceous represents a peak period of the North China Craton(NCC)destruction.A comprehensive analysis of crustal deformation during this period can reveal processes and dynamics of the destruction.The peak ...The Early Cretaceous represents a peak period of the North China Craton(NCC)destruction.A comprehensive analysis of crustal deformation during this period can reveal processes and dynamics of the destruction.The peak destruction of the NCC was associated with intense extension whose representative deformation products are metamorphic core complexes(MCCs),extensional domes and rifted basins.These MCCs occurred along both northern and southern margins of the NCC,and resulted from synchronous extension and magmatism,showing difference from the typical orogen-type MCCs in many aspects.The MCCs of the Early Cretaceous were replaced by extensional domes under relatively weak extension and uplift.In contrast to a major depression-type basin of the Early Cretaceous in the western NCC,rifted basins of the same age in the eastern NCC appeared as medium-to small-scale ones extensively.In the eastern NCC,the rifted basins north of the Bohai Bay are characterized by a feature similar to an active rift whereas those south of the Bohai present similarity to a passive rift.Various sorts of extensional structures developed during the peak destruction indicate a stable stress state of NE-SE extension over the entire central to eastern NCC,consistent with the plate margin-driven stress field.Spatial distribution of the extensional structures presents an 1800 km wide back-arc extension region in the central to eastern NCC,consistent with the Paleo-Pacific slab rollback model following flat subduction.Temporal-spatial variation of initial extension and volcanic activity during the peak period also supports the rollback model right after the flat oceanic slab.The crustal deformation evolution demonstrates that the peak destruction of the NCC took place after the B-episode compression of the Yanshan Movement of the earliest Early Cretaceous and terminated with onset of the C-episode compression of the earliest Late Cretaceous.展开更多
基金Acknowledgements Thanks to two anonymous reviewers for thier reviews and constructive comments of our manuscript. We also wish to thank Prof. T. Kusky and Dr. D. Viete fbr their critical suggestions for improving the manuscript. Thanks to editors fur their polishing English. We extend our gratitude towards chief geologist Cai Dongsheng for providing the seismic sections of offshore oilfields. This research was funded by the National Natural Science Foundation of China (Grant Nos, 40772121, 40172066, and 40314141) and State Key Projects (Nos. 2008ZX05029-001 and 201 IZX05029-001 ).
文摘The Bohai Sea is a Late Mesozoic-Cenozoic feature of the basin-mountain system located in eastern North China Craton (NCC). The Late Mesozoic thinning of the lithosphere signals the early destruction of the NCC. The onset of the destruction was due to the delamination of thick lithosphere of the craton, represented by the NW- trending grabens in an en-echelon arrangement west to Tanlu Fault, and by the NNE-trending grabens within the Tanlu Fault Zone. The Late Mesozoic NW-trending grabens are overprinted by structures related to the Cenozoic NE-trending pull-apart basin with very thick Mesozoic-Cenozoic sediments in the eastern NCC. C- frequency diagrams of growth faults and the extension factor (fl) of four sections across the basin suggest that the extension migrated from the margin to the center of Bohai Sea, and that the Mesozoic and Cenozoic extension factors for Bohai Sea are higher than that of the margin. These evidences suggest that the greatest extension occurred in the center of Bohai Sea, which is consistent with the thinnest crust being found in the center of the sea. The extension ratios and tectonic evolution of the Bohai Sea suggest that it is the key region for the destruction of the NCC, as evidenced by the topography. However, the NCC experienced two stages of destruction with the late stage related to the tectonic regime of Northeast Asia.
基金supported by the Ministry of Science and Technology of China(Grant No.2016YFC0600102)the National Natural Science Foundation of China(Grant Nos.41830213&41688103)。
文摘The Early Cretaceous represents a peak period of the North China Craton(NCC)destruction.A comprehensive analysis of crustal deformation during this period can reveal processes and dynamics of the destruction.The peak destruction of the NCC was associated with intense extension whose representative deformation products are metamorphic core complexes(MCCs),extensional domes and rifted basins.These MCCs occurred along both northern and southern margins of the NCC,and resulted from synchronous extension and magmatism,showing difference from the typical orogen-type MCCs in many aspects.The MCCs of the Early Cretaceous were replaced by extensional domes under relatively weak extension and uplift.In contrast to a major depression-type basin of the Early Cretaceous in the western NCC,rifted basins of the same age in the eastern NCC appeared as medium-to small-scale ones extensively.In the eastern NCC,the rifted basins north of the Bohai Bay are characterized by a feature similar to an active rift whereas those south of the Bohai present similarity to a passive rift.Various sorts of extensional structures developed during the peak destruction indicate a stable stress state of NE-SE extension over the entire central to eastern NCC,consistent with the plate margin-driven stress field.Spatial distribution of the extensional structures presents an 1800 km wide back-arc extension region in the central to eastern NCC,consistent with the Paleo-Pacific slab rollback model following flat subduction.Temporal-spatial variation of initial extension and volcanic activity during the peak period also supports the rollback model right after the flat oceanic slab.The crustal deformation evolution demonstrates that the peak destruction of the NCC took place after the B-episode compression of the Yanshan Movement of the earliest Early Cretaceous and terminated with onset of the C-episode compression of the earliest Late Cretaceous.