Activated ceria (CeO2/γ-Al2O3) prepared by impregnation was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and hydrogen temperature-programmed reduction (TPR). The desulfurizati...Activated ceria (CeO2/γ-Al2O3) prepared by impregnation was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and hydrogen temperature-programmed reduction (TPR). The desulfurization of the activated ceria was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TG). The results showed that ceria could be highly dispersed or crystallized on the surface of γ-alumina. The reduction temperatures of 0.1CeO2/γ-Al2O3, 0.45CeO2/7-A1203, and CeO2 ranged from 250℃ to 470℃, 330℃ to 550℃, and 350℃ to 550℃, respectively. The reduction peak temperature of 0.45CeO2/γ-Al2O3 was higher than that of 0.1CeO2/γ-Al2O3, which was consistent with the reduction temperature of CeO2. 02 participated in the reaction between ceria and sulfur dioxide. The desulfurization product was cerium(III) sulfate. The intensity of the hydroxyl band decreased with the formation of sulfate species.展开更多
基金the finical support from the National Natural Science Foundation of China (Nos. 51264023, 51364020, and U1202271)the Program for Innovative Research Team in Universities of the Ministry of Education of China (No. IRT1250)the Yunnan Province Science and Technology Talents (No. 2014HA003)
文摘Activated ceria (CeO2/γ-Al2O3) prepared by impregnation was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and hydrogen temperature-programmed reduction (TPR). The desulfurization of the activated ceria was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TG). The results showed that ceria could be highly dispersed or crystallized on the surface of γ-alumina. The reduction temperatures of 0.1CeO2/γ-Al2O3, 0.45CeO2/7-A1203, and CeO2 ranged from 250℃ to 470℃, 330℃ to 550℃, and 350℃ to 550℃, respectively. The reduction peak temperature of 0.45CeO2/γ-Al2O3 was higher than that of 0.1CeO2/γ-Al2O3, which was consistent with the reduction temperature of CeO2. 02 participated in the reaction between ceria and sulfur dioxide. The desulfurization product was cerium(III) sulfate. The intensity of the hydroxyl band decreased with the formation of sulfate species.