期刊文献+
共找到20,829篇文章
< 1 2 250 >
每页显示 20 50 100
Few-layered hexagonal boron nitride nanosheets stabilized Pt NPs for oxidation promoted adsorptive desulfurization of fuel oil
1
作者 Peiwen Wu Xin Song +9 位作者 Linlin Chen Lianwen He Yingcheng Wu Duanjian Tao Jing He Chang Deng Linjie Lu Yanhong Chao Mingqing Hua Wenshuai Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期495-506,共12页
A few-layered hexagonal boron nitride nanosheets stabilized platinum nanoparticles(Pt/h-BNNS)is engineered for oxidation-promoted adsorptive desulfurization(OPADS)of fuel oil.It was found that the few-layered structur... A few-layered hexagonal boron nitride nanosheets stabilized platinum nanoparticles(Pt/h-BNNS)is engineered for oxidation-promoted adsorptive desulfurization(OPADS)of fuel oil.It was found that the few-layered structure and the defective sites of h-BNNS not only are beneficial to the stabilization of Pt NPs but also favor the adsorption of aromatic sulfides.By employing Pt/h-BNNS with a Pt loading amount of 1.19 wt%as the active adsorbent and air as an oxidant,a 98.0%sulfur removal over dibenzothiophene(DBT)is achieved along with a total conversion of the DBT to the corresponding sulfones(DBTO_(2)).Detailed experiments show that the excellent desulfurization activity originates from the few-layered structure of h-BNNS and the high catalytic activity of Pt NPs.In addition,the OPADS system with Pt/h-BNNS as the active adsorbent shows remarkable stability in desulfurization performance with the existence of different interferents such as olefin,and aromatic hydrocarbons.Besides,the Pt/h-BNNS can be recycled 12 times without a significant decrease in desulfurization performance.Also,a process flow diagram is proposed for deep desulfurization of fuel oil and recovery of high value-added products,which would promote the industrial application of such OPADS strategy. 展开更多
关键词 desulfurization Adsorption Catalytic oxidation Active adsorbent DIBENZOTHIOPHENE
下载PDF
Synergistic catalysis of the N-hydroxyphthalimide on flower-like bimetallic metal-organic frameworks for boosting oxidative desulfurization
2
作者 Jing He Kun Zhu +5 位作者 Wei Jiang Dong-Ao Zhu Lin-Hua Zhu Hai-Yan Huang Wen-Shuai Zhu Hua-Ming Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期674-682,共9页
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram... Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials. 展开更多
关键词 Metal-organic frameworks DOPED BIMETALLIC N-HYDROXYPHTHALIMIDE Aerobic processes Oxidative desulfurization
下载PDF
Potential Secretory Transporters and Biosynthetic Precursors of Biological Nitrification Inhibitor 1,9-Decanediol in Rice as Revealed by Transcriptome and Metabolome Analyses
3
作者 DI Dongwei MA Mingkun +3 位作者 ZHANG Xiaoyang LU Yufang Herbert J.KRONZUCKER SHI Weiming 《Rice science》 SCIE CSCD 2024年第1期87-102,共16页
Biological nitrification inhibitors(BNIs)are released from plant roots and inhibit the nitrification activity of microorganisms in soils,reducing NO_(3)^(‒)leaching and N2O emissions,and increasing nitrogenuse efficie... Biological nitrification inhibitors(BNIs)are released from plant roots and inhibit the nitrification activity of microorganisms in soils,reducing NO_(3)^(‒)leaching and N2O emissions,and increasing nitrogenuse efficiency(NUE).Several recent studies have focused on the identification of new BNIs,yet little is known about the genetic loci that govern their biosynthesis and secretion.We applied a combined transcriptomic and metabolomic analysis to investigate possible biosynthetic pathways and transporters involved in the biosynthesis and release of BNI 1,9-decanediol(1,9-D),which was previously identified in rice root exudates.Our results linked four fatty acids,icosapentaenoic acid,linoleate,norlinolenic acid,and polyhydroxy-α,ω-divarboxylic acid,with 1,9-D biosynthesis and three transporter families,namely the ATP-binding cassette protein family,the multidrug and toxic compound extrusion family,and the major facilitator superfamily,with 1,9-D release from roots into the soil medium.Our finding provided candidates for further work on the genes implicated in the biosynthesis and secretion of 1,9-D and pinpoint genetic loci for crop breeding to improve NUE by enhancing 1,9-D secretion,with the potential to reduce NO_(3)^(‒)leaching and N2O emissions from agricultural soils. 展开更多
关键词 1 9-decanediol biological nitrification inhibitor metabolomic analysis nitrogen-use efficiency transcriptomic analysis
下载PDF
Fabrication of Silane and Desulfurization Ash Composite Modified Polyurethane and Its Interfacial Binding Mechanism
4
作者 吴旺华 CHEN Shuichang +4 位作者 YE Haodong 李世迁 LIN Yuanzhi 陈庆华 XIAO Liren 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期288-297,共10页
Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration ... Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration of DA as hard segments into the PU molecular chain.The effects of DA content(φ)on the mechanical properties,thermal stability,and hydrophobicity of PU,both before and after the addition of KH550,were thoroughly examined.The results of microscopic mechanism analysis confirmed that KH550 chemically modified the surface of DA,facilitating its incorporation into the polyurethane molecular chain,thereby significantly enhancing the compatibility and dispersion of DA within the PU matrix.When the mass fraction of modified DA(MDA)reached 12%,the mechanical properties,thermal stability,and hydrophobicity of the composites were substantially improved,with the tensile strength reaching 14.9 MPa,and the contact angle measuring 100.6°. 展开更多
关键词 POLYURETHANE silane coupling agent desulfurization ash modification mechanical property HYDROPHOBICITY thermal stability
下载PDF
Improving dryland maize productivity and water efficiency with heterotrophic ammonia-oxidizing bacteria via nitrification and cytokinin activity
5
作者 Xiaoling Wang Jiawei Cao +4 位作者 Runhong Sun Wei Liu Lin Qi Peng Song Shenjiao Yang 《The Crop Journal》 SCIE CSCD 2024年第3期880-887,共8页
A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heter... A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heterotrophic ammonia-oxidizing bacteria(HAOB)strain S2_8_1 was used.Six treatments were applied:(1)no irrigation+HAOB strain(DI),(2)no irrigation+blank culture medium(DM),(3)no irrigation control(DCK),(4)irrigation+HAOB(WI),(5)irrigation+blank culture medium(WM),and(6)irrigation control(WCK).Results revealed that HAOB treatment increased maize growth,yield,and water use efficiency over controls,regardless of whether the year was wet or dry.This improvement was attributed to the accelerated nitrification in the rhizosphere soil due to HAOB inoculation,which subsequently led to increased levels of leaf cytokinins.Overall,these findings suggest that HAOB inoculation holds promise as a strategy to boost water use efficiency and maize productivity in dryland agriculture. 展开更多
关键词 Keywords:Heterotrophic ammonia-oxidizing bacteria Rhizosphere soil nitrification CYTOKININ MAIZE Dryland agriculture
下载PDF
Synthesis of boron nitride nanorod and its performance as a metalfree catalyst for oxidative desulfurization of diesel fuel
6
作者 Tanaz Ghanadi Gholamreza Moradi Alimorad Rashidi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期120-132,共13页
In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal efree catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by he... In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal efree catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by heating treatment at 900℃in nitrogen atmosphere that the characteristics of the sample were identified by the X-ray diffraction,Fourier-transform infrared spectroscopy,Raman spectroscopy,field emission scanning electron microscopy,transmission electron microscopy,atomic force microscopy,and N2 adsorptionedesorption isotherms.The results of structural and morphological analysis represented that BN has been successfully synthesized.The efficacy of the main operating parameters on the process was studied by using response surface methodology based on the BoxeBehnken design method.The prepared catalyst showed high efficiency in oxidative desulfurization of diesel fuel with initial sulfur content of 8040 mg·kg^(-1)S.From statistical analysis,a significant quadratic model was obtained to predict the sulfur removal as a function of efficient parameters.The maximum efficiency of 72.4%was achieved under optimized conditions at oxidant/sulfur molar ratio of 10.2,temperature of 71℃,reaction time of 113 min,and catalyst dosage of 0.36 g.Also,the reusability of the BN was studied,and the result showed little reduction in activity of the catalyst after 10 times regeneration.Moreover,a plausible mechanism was proposed for oxidation of sulfur compounds on the surface of the catalyst.The present study shows that BN materials can be selected as promising metal-free catalysts for desulfurization process. 展开更多
关键词 desulfurization Boron nitride(BN)nanostructure Experimental design BoxeBehnken
下载PDF
Simultaneous desulfurization and denitrification of sintering flue gas via composite absorbent 被引量:27
7
作者 Jie Wang Wenqi Zhong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第8期1104-1111,共8页
Experiments on simultaneous absorption of SO_2 and NO_X from sintering flue gas via a composite absorbent NaClO_2/NaClO were carried out. The effects of various operating parameters such as NaClO_2 concentration(ms), ... Experiments on simultaneous absorption of SO_2 and NO_X from sintering flue gas via a composite absorbent NaClO_2/NaClO were carried out. The effects of various operating parameters such as NaClO_2 concentration(ms), NaClO concentration(mp), molar ratio of NaClO_2/NaClO(M), solution temperature(TR), initial solution pH, gas flow(Vg) and inlet concentration of SO_2(CS) and NO(CN) on the removal efficiencies of SO_2 and NO were discussed. The optimal experimental conditions were determined to be initial solution pH = 6, TR=55 °C and M = 1.3 under which the average efficiencies of desulfurization and denitrification could reach99.7% and 90.8%, respectively. Moreover, according to the analysis of reaction products, it was found that adding NaClO to NaClO_2 aqueous solution is favorable for the generation of ClO_2 and Cl_2 which have significant effect on desulfurization and denitrification. Finally, engineering experiments were performed and obtained good results demonstrating that this method is practicable and promising. 展开更多
关键词 Simultaneous desulfurization and DEnitrification SINTERING FLUE gas COMPOSITE ABSORBENT
下载PDF
Experimental study on the simultaneous desulfurization and denitrification by duct injection 被引量:9
8
作者 ZHAOYi FUYan-chun MAShuang-chen HUANGJian-jun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第4期674-677,共4页
The highly active absorbent with oxidization based on fly ash, lime and additive was prepared. Experiments of simultaneous desulfurization and denitrification were carried out using fixture bed and duct injection. The... The highly active absorbent with oxidization based on fly ash, lime and additive was prepared. Experiments of simultaneous desulfurization and denitrification were carried out using fixture bed and duct injection. The influencial factors for the absorptive capacity of the absorbent were studied. The absorptive capacities of 120.7 mg for SO 2 and 43.7 mg for NOx were achieved at a Ca/(S+N) molar ratio 1.2, respectively, corresponding removal efficiencies of 87% and 76%, while spent absorbent appeared in the form of dry powder. The optimal temperature and humidity of flue gas treated with this process were shown to be approximately 50℃, and 5% respectively. The mechanism of removal for SO 2 and NOx was investigated. In comparison with traditional dry FGD, this process appears to have lower cost, less complicated configuration and simpler disposal of used absorbent. The valuable references can be provided for industrial application by this process. The foreground of application will be vast in China and in the world. 展开更多
关键词 simultaneous desulfurization and denitrification duct injection absorptive capacity
下载PDF
Simultaneous desulfurization and denitrification of flue gas by pre-ozonation combined with ammonia absorption 被引量:5
9
作者 Baowei Wang Shumei Yao Yeping Peng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第9期2457-2466,共10页
A process of simultaneous desulfurization and denitrification of flue gas was conducted in this study.The flue gas containing 200 mg·m^-3NO,1000-4000 mg·m^-3SO(2,)3%-9%O(2)and 10%-20%CO(2)was first oxidized ... A process of simultaneous desulfurization and denitrification of flue gas was conducted in this study.The flue gas containing 200 mg·m^-3NO,1000-4000 mg·m^-3SO(2,)3%-9%O(2)and 10%-20%CO(2)was first oxidized b(y)O3 and then absorbed by ammonia in a bubbling reactor.Increasing the ammonia concentration or the SO2 content in flue gas can promote the absorption of NOx and extend the effective absorption time.On the contrary,both increasing the absorbent temperature or the O(2)content shorten the effective absorption time of NO((x.))The change of solution pH had substantial influence on NOx absorption.In the presence of CO(2)the NOx removal efficiency reached 89.2%when the absorbent temperature was raised to 60℃and the effective absorption time can be maintained for 8 h,which attribute to the buffering effect in the absorbent.Besides,both the addition of Na(2)S2 O3 and urea can promote the NOx removal efficiency when the absorbent temperature is 25℃and the addition of Na(2)S2 O3 had achieved better results.The advantage of adding Na(2)S2 O3 became less evident at higher absorbent temperature and coexistence of CO(2.)In all experiments,SO(2)removal efficiency was always above 99%,and it was basically not affected by the above factors. 展开更多
关键词 Flue gas Ammonia absorption desulfurization DEnitrification PRE-OZONATION
下载PDF
Tentative Study on a New Way of Simultaneous Desulfurization and Denitrification 被引量:7
10
作者 王爱杰 杜大仲 +2 位作者 任南琪 程翔 刘春爽 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第3期422-425,共4页
Thiobacillus denitrificans, a kind of autotrophic facultative bacteria, can oxidize sulfide into elemental sulfur or sulfate when nitrate was adopted as its electron accepter and carbon dioxide as its carbon resource ... Thiobacillus denitrificans, a kind of autotrophic facultative bacteria, can oxidize sulfide into elemental sulfur or sulfate when nitrate was adopted as its electron accepter and carbon dioxide as its carbon resource under anoxic or anaerobic environment. In this way, nitrate is converted into nitrogen. In addition, Thiobacillus denitrificans can accumulate sulfur extracellularly. In this study, in a process of simultaneous desulfurization and denitrification, a strain of Thiobacillus denitrificans is employed as sulfur-producer in the treatment of wastewater containing sulfide and nitrate. The key factors affecting this process are investigated through batch tests. The experimental results indicate that the sulfide concentration and the ratio of sulfide to nitrate (S^2-/NO3^-) in the influent are the key factors, and their suitable values are suggested to be 5/3 and no more than 300mg·L^-1, respectively, in order to achieve high conversion of sulfur. 展开更多
关键词 直接脱硫 脱氮作用 硫磺 硫化物 废水处理
下载PDF
Spectroscopic Characterization of Mo-Co-S and Mo-Fe-S Complexes-derived Catalysts for Desulfurization and Denitrification
11
作者 LIN Guo-dong, LIU Yu-da, YANG Yi-quan and ZHANG Hong-bin(Department of Chemistry and Institute, of Physical Chemistry,Xiamen University, Xiamen, 361005) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1992年第3期188-195,共8页
The characteristic studies, by means of LR, UV-Vis and XPS spectroscopies, of the preparation process of Mo-Co-S and Mo-Fe-S catalysts for HDS and HDN, derived from (NH4)2MoS4-CoCl2 and (NH4)2MoS4-FeCl2 complexes supp... The characteristic studies, by means of LR, UV-Vis and XPS spectroscopies, of the preparation process of Mo-Co-S and Mo-Fe-S catalysts for HDS and HDN, derived from (NH4)2MoS4-CoCl2 and (NH4)2MoS4-FeCl2 complexes supported on γ-Al2O3, respectively, indicate that the catalytically essential moiety on the surface of the catalysts is dominantly some sulfido-bimetallic species with such a structural unit (M' =Co or Fe), and both Co and Fe, served as promoters, can donate electrons to Mo probably via bridging-S. The nature of active-sites and the mechanism of promotion are discussed according to the results. 展开更多
关键词 Mo-Co-S and Mo-Fe-S catalysts desulfurization and denitrification Spectroscopic characterization
下载PDF
Feasibility of an innovative integrated process of simultaneous desulfurization and denitrification for high strength wastewater
12
作者 王爱杰 刘春爽 +4 位作者 任南琪 邓旭亮 万春黎 于振国 许新 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第1期13-17,共5页
An anaerobic expanding-bed reactor was adopted to investigate the feasibility of an innovative integrated process of simultaneous desulfurization and denitrification (SDD) for high strength wastewater. In the reactor,... An anaerobic expanding-bed reactor was adopted to investigate the feasibility of an innovative integrated process of simultaneous desulfurization and denitrification (SDD) for high strength wastewater. In the reactor, heterotrophic bacteria (including sulfate reducing bacterium and denitrifying bacteria) and autotrophic bacteria (including Thiobacillus denitrificans) cooperated together by incubating and enriching functional bacteria on different carriers in the anaerobic activated sludge. Synthetic wastewater with high concentrations of sulfate and nitrate was employed. The experimental results showed that the removal efficiency of sulfate and nitrate was above 85%, elemental sulfur was observed while nitrate was absent in effluent. The balance of sulfur, nitrogen and electron was discussed respectively, which indicated that the integrated SDD process could be actualized. These results might provide a guidance to further investigate the key factors affecting the integrated SDD process and to improve the efficiency of desulfurization and denitrification in wastewater treatment. 展开更多
关键词 废水处理 氮平衡 脱硫作用 技术性能
下载PDF
Integration of Desulfurization and Lithium-Sulfur Batteries Enabled by Amino-Functionalized Porous Carbon Nanofibers 被引量:2
13
作者 Minghui Sun Xuzhen Wang +2 位作者 Yong Li Zongbin Zhao Jieshan Qiu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期334-343,共10页
Hydrogen sulfide(H_(2)S)is an industrial exhausted gas that is highly toxic to humans and the environment.Combining desulfurization and fabrication of cathode materials for lithium-sulfur batteries(LSBs)can solve this... Hydrogen sulfide(H_(2)S)is an industrial exhausted gas that is highly toxic to humans and the environment.Combining desulfurization and fabrication of cathode materials for lithium-sulfur batteries(LSBs)can solve this issue with a double benefit.Herein,the amino-functionalized lotus root-like carbon nanofibers(NH_(2)-PLCNFs)are prepared by the amination of electrospinning carbon nanofibers under dielectric barrier discharge plasma.Selective catalytic oxidation of H_(2)S to elemental sulfur(S)is achieved over the metalfree NH_(2)-PLCNFs catalyst,and the obtained composite S@NH_(2)-PLCNFs is further used as cathode in LSBs.NH_(2)-PLCNFs enable efficient desulfurization(removal capacity as high as 3.46 g H_(2)S g^(−1) catalyst)and strongly covalent stabilization of S on modified carbon nanofibers.LSBs equipped with S@NH_(2)-PLCNFs deliver a high specific capacity of 705.8 mA h g^(−1) at 1 C after 1000 cycles based on the spatial confinement and the covalent stabilization of electroactive materials on amino-functionalized porous carbon matrix.It is revealed that S@NH_(2)-PLCNFs obtained by this kind of chemical vapor deposition leads to a more homogeneous S distribution and superior electrochemical performance to the sample S/NH_(2)-PLCNF-M prepared by the traditional molten infusion.This work opens a new avenue for the combination of environment protection and energy storage. 展开更多
关键词 AMINO-FUNCTIONALIZATION desulfurization lithium-sulfur batteries porous carbon nanofiber sulfur immobilization
下载PDF
Experimental study on simultaneous desulfurization and denitrifi- cation based on highly active absorbent 被引量:5
14
作者 ZHAO Yi XU Pei-yao FU Dong HUANG Jian-jun YU Huan-huan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第2期281-286,共6页
Simultaneous removal of SO2 and NO from flue gas by the highly active absorbent prepared from fly ash, lime and a few oxidizing manganese compound additive was studied using a flue gas circulating fluidized bed (CFB... Simultaneous removal of SO2 and NO from flue gas by the highly active absorbent prepared from fly ash, lime and a few oxidizing manganese compound additive was studied using a flue gas circulating fluidized bed (CFB) under different experimental conditions. The effects influencing the removal effiencies were discussed. The optimal flue gas temperature, flue gas humidity, gas velocity of CFB and Ca/(S+N) molar ratio with this process were approximately 110℃, 6%, 1.8 m/s and 1.05, respectively. Removal efficiencies of 92.3% for SO2 and 60.88% for NO were obtained under the optimal experimental conditions. While the spent absorbent appeared in the form of dry powder, the mechanism of removal for SO2 and NO based on the highly active absorbent was investigated by a scanning electron microscope (SEM), a X-ray energy spectrometer and the chemical analysis methods. The valuable references can be provided for industrial application by the process. The foreground of application will be vast in China and in the world. 展开更多
关键词 simultaneous desulfurization and denitrifieation CFB removal efficiency MECHANISM
下载PDF
Facile synthesis of efficient pentaethylenehexamine-phosphotungstic acid heterogeneous catalysts for oxidative desulfurization
15
作者 Chongfu Wu Changsheng Chen +4 位作者 Zhaoyang Qi Jie Chen Qinglian Wang Changshen Ye Ting Qiu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期140-147,共8页
The ultra-deep desulfurization of oil needs to be solved urgently due to various problems,including environmental pollution and environmental protection requirements.Oxidative desulfurization(ODS)was considered to be ... The ultra-deep desulfurization of oil needs to be solved urgently due to various problems,including environmental pollution and environmental protection requirements.Oxidative desulfurization(ODS)was considered to be the most promising technology.The facile synthesis of highly efficient and stable HPW-based heterogeneous catalysts for oxidative desulfurization is still a challenging task.In this paper,pentamethylene hexamine(PEHA)and phosphotungstic acid(HPW)were combined by a simple one-step method to prepare a heterogeneous catalyst of PEHA-HPW for the production of ultra-deep desulfurization fuel oil.The composite material exhibited excellent catalytic activity and high recyclability,which could reach a 100% dibenzothiophene(DBT)removal rate in 30 min and be recycled at least 5 times.Experiments and DFT simulations were used to better examine the ODS mechanism of PEHA-HPW.It was proved that the rich amino groups on the surface of PEHA-HPW play a crucial role.This work provides a simple and feasible way for the manufacture of efficient HPW-based catalysts. 展开更多
关键词 OXIDATION CATALYST desulfurization FUEL Phosphotungstic acid AMINO
下载PDF
Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization
16
作者 Risheng Bai Yue Song +3 位作者 Ge Tian Fei Wang Avelino Corma Jihong Yu 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期163-172,共10页
The exploration of highly efficient catalysts based on nano-sized Ti-rich titanosilicate zeolites with controllable active titanium species is of great importance in zeolite catalytic reactions.Herein,we reported an e... The exploration of highly efficient catalysts based on nano-sized Ti-rich titanosilicate zeolites with controllable active titanium species is of great importance in zeolite catalytic reactions.Herein,we reported an efficient and facile synthesis of nano-sized Ti-rich TS-1(MFI)zeolites by replacing tetrabutyl orthotitanate(TBOT)with tetrabutyl orthotitanate tetramer(TBOT-tetramer)as the titanium source.The introduced TBOT-tetramer slowed down the zeolite crystallization process,and accordingly balanced the rate of incorporating Ti and the crystal growth and inhibited the massive formation of anatase species.Notably,the prepared Ti-rich TS-1 zeolite sample had a Si/Ti as low as 27.6 in contrast to conventional one with a molar ratio of 40.The TBOT-tetramer endowed the titanosilicate zeolites with enriched active titanium species and enlarged external surface area.It also impeded the formation of anatase species,resulting in superior catalytic behavior toward the oxidative desulfurization of dibenzothiophene compared with the conventional TS-1 zeolite counterpart prepared with TBOT. 展开更多
关键词 TS-1 ZEOLITE Ti-rich Heterogeneous catalysis Oxidative desulfurization
下载PDF
Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor
17
作者 Lijuan Zhao Zhe Tan +5 位作者 Xiaoguang Zhang Qijun Zhang Wei Wang Qiang Deng Jie Ma De'an Pan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期293-303,共11页
In the reaction process of carbonate desulfurization lead paste,the produced PbCO_(3) is easily wrapped in the outer periphery of PbSO_(4) to form a product layer,hindering the mass transfer process.Therefore,it is ne... In the reaction process of carbonate desulfurization lead paste,the produced PbCO_(3) is easily wrapped in the outer periphery of PbSO_(4) to form a product layer,hindering the mass transfer process.Therefore,it is necessary to break the PbCO_(3) product layer.In this work,the rotor stator-reinforced reactor was selected as the enhanced desulfurization reactor for the purpose of breaking the PbCO_(3) product layer and promoting mass transfer.The breakage process of the PbCO_(3) product layer generated during the PbSO_(4) desulfurization was modeled.Computational fluid dynamics simulation to the rotation conditions was carried out to theoretically analyze the fluid flow characteristics of PbSO_(4) slurry and the wall shear stress affecting the breakage of PbCO_(3) product layer.By optimizing the rotation conditions,the distribution ratio of effective rotor wall shear stress range achieved 96.1%,and the stator wall shear stress range reached 99.15%under a rotation of 2000 r·min^(-1).The research work provides a reference for analysis of the mechanism of product layer breakage in the PbSO_(4) desulfurization process,and gives a clear and intuitive systematic study on the fluid flow characteristics and wall shear stress of the desulfurization reactor. 展开更多
关键词 Chemical reactors Computational fluid dynamics CFD SIMULATION desulfurization Core-shell structure
下载PDF
Encapsulation of ionic liquid, phosphotungstic acid inside the nanocages of MIL-101(Cr): Effective and reusable catalyst for efficient solvent-free oxidative desulfurization from fuel oil
18
作者 Bo-Long Jiang Dong-Xu Zhang +3 位作者 Dan-Dan Yuan Yan-Guang Chen Tian-Zhen Hao Hua Song 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3865-3874,共10页
Oxidative desulfurization from fuel oil is one of the important methods for deep desulfurization.The development of efficient oxidative desulfurization catalysts is crucial for improving the desulfurization performanc... Oxidative desulfurization from fuel oil is one of the important methods for deep desulfurization.The development of efficient oxidative desulfurization catalysts is crucial for improving the desulfurization performance.Successful encapsulation of phosphotungstic acid(HPW)and ionic liquid(BMImBr)inside the mesoporous cages of MIL-101(Cr)was accomplished through a combination of“bottle around ship”and“ship in bottle”methods.The obtained BMImPW@MIL-101(Cr)composite was characterized by XRD,FTIR,BET,SEM,XPS and ICP methods.Results indicated that the BMImPW@MIL-101(Cr)composites with PW^(3−) loading of 23.1–50.7 wt%were obtained,demonstrating that the“bottle around ship”method is beneficial to make full use of nanocages of MIL-101(Cr)to obtain expected high loading of active PW^(3−) .The BMImPW@MIL-101(Cr)exhibits excellent reusability with no evidence of leaching of active PW^(3−) and BMIm^(+),and well-preserved structure after successive cycles of regeneration and reuse.The significantly improved stability of BMImPW@MIL-101(Cr)as compared to HPW@MIL-101(Cr)is possibly because the leaching of the active PW^(3−) −sites can be greatly suppressed by forming large size of BMImPW owing to introduction of BMIm^(+)cation.The BMImPW@MIL-101(Cr)exhibited excellent catalytic activity for solvent free oxidative desulfurization of refractory sulfides.The enhanced oxidative desulfurization activity as compared to HPW@MIL-101(Cr)can be explained by the intimate contact of sulfides with active PW^(3−) sites owing the strong attraction of BMIm^(+)cation with the sulfides. 展开更多
关键词 Metal organic frameworks Phosphotungstic acid lonic liquids Stability Oxidative desulfurization
下载PDF
Simultaneous nitrification and autotrophic denitrification in fluidized bed reactors using pyrite and elemental sulfur as electron donors
19
作者 Maria F.Carboni Sonia Arriaga Piet N.L.Lens 《Water Science and Engineering》 EI CAS CSCD 2023年第2期143-153,共11页
In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was... In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was evaluated at different ammonium (12-40 mg/L of NH4+-N), nitrate (35-45 mg/L of NO3--N), and dissolved oxygen (DO) (0.1-1.5 mg/L) concentrations, with a hydraulic retention time of 12 h. The pyrite reactor supported the SNAD process with a maximum nitrogen removal efficiency of 139.5 mg/(L·d) when the DO concentration was in the range of 0.8-1.5 mg/L. This range, however, limited the denitrification efficiency of the reactor, which decreased from 90.0% ± 5.3% in phases II-V to 67.9% ± 7.2% in phases VI and VII. Sulfate precipitated as iron sulfate (FeSO4/Fe2(SO4)3) and sodium sulfate (Na2SO4) minerals during the experiment. The sulfur reactor did not respond well to nitrification with a low and unstable ammonium removal efficiency, while denitrification occurred with a nitrate removal efficiency of 97.8%. In the pyrite system, the nitrifying bacterium Nitrosomonas sp. was present, and its relative abundance increased from 0.1% to 1.1%, while the autotrophic denitrifying genera Terrimonas, Ferruginibacter, and Denitratimonas dominated the community. Thiobacillus, Sulfurovum, and Trichlorobacter were the most abundant genera in the sulfur reactor during the entire experiment. 展开更多
关键词 PYRITE Elemental sulfur Simultaneous nitrification and denitrification Nitrogen removal 16S rRNA
下载PDF
New insights into the mechanism of reactive adsorption desulfurization on Ni/ZnO catalysts:Theoretical evidence showing the existence of interfacial sulfur transfer pathway and the essential role of hydrogen
20
作者 Hou-Yu Zhu Nai-You Shi +8 位作者 Dong-Yuan Liu Rui Li Jing-Gang Yu Qi-Tang Ma Tu-Ya Li Hao Ren Yuan Pan Yun-Qi Liu Wen-Yue Guo 《Petroleum Science》 SCIE EI CSCD 2023年第5期3240-3250,共11页
As well known in the petroleum industry and academia,Ni/ZnO catalysts have excellent desulfurization performance.However,the sulfur transfer mechanism of reactive adsorption desulfurization(RADS)that occurs on Ni/ZnO ... As well known in the petroleum industry and academia,Ni/ZnO catalysts have excellent desulfurization performance.However,the sulfur transfer mechanism of reactive adsorption desulfurization(RADS)that occurs on Ni/ZnO catalysts remains controversial.Herein,a periodic Ni nanorod supported on ZnO slab was built to represent the Ni/ZnO system,and density functional theory calculations were performed to study the sulfur transfer process and the role of H_(2)within the process.The results elucidate that the direct solid-state diffusion of S from Ni to interfacial oxygen vacancies(Ov)is more favorable than the hydrogenation of S to SH/H_(2)S on Ni and the subsequent H_(2)S desorption,and accordingly,H_(2)O is produced on Ni rather than on ZnO.Ab initio thermodynamics analysis shows that the hydrogen atmosphere applied in preparing Ni/ZnO catalysts greatly promotes the O_(v)formation on ZnO surface,which accounts for the presence of interfacial O_(v)in freshly prepared catalysts.Under RADS condition,hydrogenation of interfacial O atoms to form O-H groups facilitates the reverse spillover of these lattice O atoms from ZnO to Ni,accompanied with the interfacial O_(v)generation.In contrast to the classic S transfer mechanism via H_(2)S,the present work clearly demonstrates that the interfacial S transfer is a feasible reaction pathway in the RADS mechanism.More importantly,the existence of interfacial O_(v)is an essential prerequisite for this interfacial S diffusion,and H_(2)plays a key role in facilitating the O_(v)formation. 展开更多
关键词 Reactive adsorption desulfurization Ni/ZnO Interface Sulfur transfer Density functional theory
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部