期刊文献+
共找到1,848篇文章
< 1 2 93 >
每页显示 20 50 100
Few-layered hexagonal boron nitride nanosheets stabilized Pt NPs for oxidation promoted adsorptive desulfurization of fuel oil
1
作者 Peiwen Wu Xin Song +9 位作者 Linlin Chen Lianwen He Yingcheng Wu Duanjian Tao Jing He Chang Deng Linjie Lu Yanhong Chao Mingqing Hua Wenshuai Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期495-506,共12页
A few-layered hexagonal boron nitride nanosheets stabilized platinum nanoparticles(Pt/h-BNNS)is engineered for oxidation-promoted adsorptive desulfurization(OPADS)of fuel oil.It was found that the few-layered structur... A few-layered hexagonal boron nitride nanosheets stabilized platinum nanoparticles(Pt/h-BNNS)is engineered for oxidation-promoted adsorptive desulfurization(OPADS)of fuel oil.It was found that the few-layered structure and the defective sites of h-BNNS not only are beneficial to the stabilization of Pt NPs but also favor the adsorption of aromatic sulfides.By employing Pt/h-BNNS with a Pt loading amount of 1.19 wt%as the active adsorbent and air as an oxidant,a 98.0%sulfur removal over dibenzothiophene(DBT)is achieved along with a total conversion of the DBT to the corresponding sulfones(DBTO_(2)).Detailed experiments show that the excellent desulfurization activity originates from the few-layered structure of h-BNNS and the high catalytic activity of Pt NPs.In addition,the OPADS system with Pt/h-BNNS as the active adsorbent shows remarkable stability in desulfurization performance with the existence of different interferents such as olefin,and aromatic hydrocarbons.Besides,the Pt/h-BNNS can be recycled 12 times without a significant decrease in desulfurization performance.Also,a process flow diagram is proposed for deep desulfurization of fuel oil and recovery of high value-added products,which would promote the industrial application of such OPADS strategy. 展开更多
关键词 desulfurization Adsorption Catalytic oxidation Active adsorbent DIBENZOTHIOPHENE
下载PDF
Synergistic catalysis of the N-hydroxyphthalimide on flower-like bimetallic metal-organic frameworks for boosting oxidative desulfurization
2
作者 Jing He Kun Zhu +5 位作者 Wei Jiang Dong-Ao Zhu Lin-Hua Zhu Hai-Yan Huang Wen-Shuai Zhu Hua-Ming Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期674-682,共9页
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram... Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials. 展开更多
关键词 Metal-organic frameworks DOPED BIMETALLIC N-HYDROXYPHTHALIMIDE Aerobic processes oxidative desulfurization
下载PDF
Oxidative Desulfurization of Fuel Oil with H_(3)PO_(4)-based Deep Eutectic Solvents
3
作者 Li Xiuping Zhang Jiayin +1 位作者 Hou Liangpei Zhao Rongxiang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期178-186,共9页
A series of Lewis-acid deep eutectic solvents (DESs) were synthesized by stirring phosphoric acid and zincchloride as raw materials at 80℃ to form H_(3)PO_(4)/nZnCl_(2) (n = 0.1, 0.25, 0.5, 0.75, 1). The DESs were ch... A series of Lewis-acid deep eutectic solvents (DESs) were synthesized by stirring phosphoric acid and zincchloride as raw materials at 80℃ to form H_(3)PO_(4)/nZnCl_(2) (n = 0.1, 0.25, 0.5, 0.75, 1). The DESs were characterized byFourier transform infrared spectrophotometry (FT-IR), thermogravimetry/differential thermogravimetry (TG/DTG), andelectron spray ionization mass spectrometry (ESI-MS). The DESs were used as both extractants and catalysts to removedibenzothiophene from fuels via oxidative desulfurization (ODS). Experiments were performed to investigated the influenceof factors such as composition of DES, temperature, oxidant dosage (molar ratio of O:S), DES dosage (volume ratio ofDES:oil), and number of cycles on desulfurization rate. The results indicated that the removal rate of dibenzothiophene (DBT)was affected by the Lewis acidic DESs, with that of H_(3)PO_(4)/0.25∙ZnCl_(2) reaching 96.4% under optimal conditions (Voil=5 mL,VDES=1 mL, an oxidant dosage of 6, T=50 ℃). After six cycles, the desulfurization rate of H_(3)PO_(4)/0.25∙ZnCl_(2) remained above94.1%. The apparent activation energy of dibenzothiophene (DBT) removal reaction was determined by a pseudo-first orderkinetic equation according to the Arrhenius equation to be 32.34 kJ/mol, as estimated. A reaction mechanism is proposedbased on the experimental data and characterization results. 展开更多
关键词 deep eutectic solvents phosphoric acid zinc chloride oxidative desulfurization
下载PDF
Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization 被引量:1
4
作者 Risheng Bai Yue Song +3 位作者 Ge Tian Fei Wang Avelino Corma Jihong Yu 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期163-172,共10页
The exploration of highly efficient catalysts based on nano-sized Ti-rich titanosilicate zeolites with controllable active titanium species is of great importance in zeolite catalytic reactions.Herein,we reported an e... The exploration of highly efficient catalysts based on nano-sized Ti-rich titanosilicate zeolites with controllable active titanium species is of great importance in zeolite catalytic reactions.Herein,we reported an efficient and facile synthesis of nano-sized Ti-rich TS-1(MFI)zeolites by replacing tetrabutyl orthotitanate(TBOT)with tetrabutyl orthotitanate tetramer(TBOT-tetramer)as the titanium source.The introduced TBOT-tetramer slowed down the zeolite crystallization process,and accordingly balanced the rate of incorporating Ti and the crystal growth and inhibited the massive formation of anatase species.Notably,the prepared Ti-rich TS-1 zeolite sample had a Si/Ti as low as 27.6 in contrast to conventional one with a molar ratio of 40.The TBOT-tetramer endowed the titanosilicate zeolites with enriched active titanium species and enlarged external surface area.It also impeded the formation of anatase species,resulting in superior catalytic behavior toward the oxidative desulfurization of dibenzothiophene compared with the conventional TS-1 zeolite counterpart prepared with TBOT. 展开更多
关键词 TS-1 ZEOLITE Ti-rich Heterogeneous catalysis oxidative desulfurization
下载PDF
Facile synthesis of efficient pentaethylenehexamine-phosphotungstic acid heterogeneous catalysts for oxidative desulfurization
5
作者 Chongfu Wu Changsheng Chen +4 位作者 Zhaoyang Qi Jie Chen Qinglian Wang Changshen Ye Ting Qiu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期140-147,共8页
The ultra-deep desulfurization of oil needs to be solved urgently due to various problems,including environmental pollution and environmental protection requirements.Oxidative desulfurization(ODS)was considered to be ... The ultra-deep desulfurization of oil needs to be solved urgently due to various problems,including environmental pollution and environmental protection requirements.Oxidative desulfurization(ODS)was considered to be the most promising technology.The facile synthesis of highly efficient and stable HPW-based heterogeneous catalysts for oxidative desulfurization is still a challenging task.In this paper,pentamethylene hexamine(PEHA)and phosphotungstic acid(HPW)were combined by a simple one-step method to prepare a heterogeneous catalyst of PEHA-HPW for the production of ultra-deep desulfurization fuel oil.The composite material exhibited excellent catalytic activity and high recyclability,which could reach a 100% dibenzothiophene(DBT)removal rate in 30 min and be recycled at least 5 times.Experiments and DFT simulations were used to better examine the ODS mechanism of PEHA-HPW.It was proved that the rich amino groups on the surface of PEHA-HPW play a crucial role.This work provides a simple and feasible way for the manufacture of efficient HPW-based catalysts. 展开更多
关键词 oxidATION CATALYST desulfurization FUEL Phosphotungstic acid AMINO
下载PDF
Encapsulation of ionic liquid, phosphotungstic acid inside the nanocages of MIL-101(Cr): Effective and reusable catalyst for efficient solvent-free oxidative desulfurization from fuel oil
6
作者 Bo-Long Jiang Dong-Xu Zhang +3 位作者 Dan-Dan Yuan Yan-Guang Chen Tian-Zhen Hao Hua Song 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3865-3874,共10页
Oxidative desulfurization from fuel oil is one of the important methods for deep desulfurization.The development of efficient oxidative desulfurization catalysts is crucial for improving the desulfurization performanc... Oxidative desulfurization from fuel oil is one of the important methods for deep desulfurization.The development of efficient oxidative desulfurization catalysts is crucial for improving the desulfurization performance.Successful encapsulation of phosphotungstic acid(HPW)and ionic liquid(BMImBr)inside the mesoporous cages of MIL-101(Cr)was accomplished through a combination of“bottle around ship”and“ship in bottle”methods.The obtained BMImPW@MIL-101(Cr)composite was characterized by XRD,FTIR,BET,SEM,XPS and ICP methods.Results indicated that the BMImPW@MIL-101(Cr)composites with PW^(3−) loading of 23.1–50.7 wt%were obtained,demonstrating that the“bottle around ship”method is beneficial to make full use of nanocages of MIL-101(Cr)to obtain expected high loading of active PW^(3−) .The BMImPW@MIL-101(Cr)exhibits excellent reusability with no evidence of leaching of active PW^(3−) and BMIm^(+),and well-preserved structure after successive cycles of regeneration and reuse.The significantly improved stability of BMImPW@MIL-101(Cr)as compared to HPW@MIL-101(Cr)is possibly because the leaching of the active PW^(3−) −sites can be greatly suppressed by forming large size of BMImPW owing to introduction of BMIm^(+)cation.The BMImPW@MIL-101(Cr)exhibited excellent catalytic activity for solvent free oxidative desulfurization of refractory sulfides.The enhanced oxidative desulfurization activity as compared to HPW@MIL-101(Cr)can be explained by the intimate contact of sulfides with active PW^(3−) sites owing the strong attraction of BMIm^(+)cation with the sulfides. 展开更多
关键词 Metal organic frameworks Phosphotungstic acid lonic liquids Stability oxidative desulfurization
下载PDF
Fabrication and characterization of tungsten-containing mesoporous silica for heterogeneous oxidative desulfurization 被引量:7
7
作者 张铭 朱文帅 +5 位作者 李宏平 荀苏杭 李猛 李亚男 魏延臣 李华明 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期971-978,共8页
A series of functional,tungsten-containing mesoporous silica materials(W-SiO2) have been fabricated directly from an ionic liquid that contained imidazole and polyoxometalate,which acted as mesoporous template and m... A series of functional,tungsten-containing mesoporous silica materials(W-SiO2) have been fabricated directly from an ionic liquid that contained imidazole and polyoxometalate,which acted as mesoporous template and metal source respectively.These materials were then characterized through X-ray diffraction(XRD),transmission electron microscopy(TEM),Raman spectroscopy,Fourier transform infrared spectra(FTIR),diffuse reflectance spectra(DRS),and N2 adsorption-desorption,which were found to contain tungsten species that were effectively dispersed throughout the structure.The as-prepared materials W-SiO2 were also found to possess a mesoporous structure.The pore diameters of the respective sample W-SiO2-20 determined from the TEM images ranged from 2 to 4 nm,which was close to the average pore size determined from the nitrogen desorption isotherm(2.9 nm).The materials were evaluated as catalysts for the heterogeneous oxidative desulfurization of dibenzothiophene(DBT),which is able to achieve deep desulfurization within 40 min under the optimal conditions(Catalyst(W-SiO2-20)= 0.01 g,temperature = 60℃,oxidant(H2O2)= 20 μL).For the removal of different organic sulfur compounds within oil,the ability of the catalyst(W-SiO2-20) under the same conditions to remove sulfur compounds decreased in the order:4,6-dimethyldibenzothiophene Dibenzothiophene Benzothiophene 1-dodecanethiol.Additionally,they did not require organic solvents as an extractant in the heterogeneous oxidative desulfurization process.After seven separate catalytic cycles,the desulfurization efficiency was still as high as 90.3%.From the gas chromatography-mass spectrometer analysis,DBT was entirely oxidized to its corresponding sulfone DBTO2 after reaction.A mechanism for the heterogeneous desulfurization reaction was proposed. 展开更多
关键词 Heterogeneous oxidative desulfurization Tungsten species Mesoporous silica One-pot synthesis ORGANOSULFUR
下载PDF
Ultra-deep oxidative desulfurization of fuel with H_2O_2 catalyzed by phosphomolybdic acid supported on silica 被引量:8
8
作者 田永胜 王光辉 +3 位作者 龙娟 崔佳伟 金伟 曾丹林 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第12期2098-2105,共8页
A highly active catalyst of phosphomolybdic acid ~HPMo) was prepared and applied in the catalytic oxidative desulfurization (CODS) system. The catalyst was characterized by FT-IR, XRD, XPS and superconducting NMR. ... A highly active catalyst of phosphomolybdic acid ~HPMo) was prepared and applied in the catalytic oxidative desulfurization (CODS) system. The catalyst was characterized by FT-IR, XRD, XPS and superconducting NMR. The influences of rn(catalyst)/m(oil), V(H202)fV(oil), reaction temperature and reaction time on the fractional conversion of benzothiophene (BT) and dibenzothiophene (DBT) were investigated. GC-MS and micra-coulometric methods were employed to investigate the reaction. The catalyst has high desulfurization activity in the removal of BT and DBT under mild conditions. The recycling experiments indicated that DBT and BT removal could still reach 95.2% and 95.7% after 10 cycles. 展开更多
关键词 Mesoporous silica Phosphomolybdic acid oxidative desulfurization Benzothiophene Dibenzothiophene
下载PDF
Feasibility of flue-gas desulfurization by manganese oxides 被引量:3
9
作者 叶万奇 李运姣 +2 位作者 孔龙 任苗苗 韩强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期3089-3094,共6页
For the purpose of effective and economic desulfurization of flue-gas, the predominance area diagram of the Mn-S-O system at different temperatures was constructed based on the thermodynamic data obtained from the lit... For the purpose of effective and economic desulfurization of flue-gas, the predominance area diagram of the Mn-S-O system at different temperatures was constructed based on the thermodynamic data obtained from the literatures. It is seen from this figure that flue-gas desulfurization by manganese oxides is feasible from the thermodynamic point of view. Additionally, the most appropriate temperature range for flue-gas desulfurization is between 600 and 800 K, and the reaction is strongly exothermic to maintain the heat balance. The natural manganese ores encompass large tunnels that exhibit large surface areas and highly chemical activity, which can provide a high enough SO2 removing efficiency. From the superposition of the diagrams of Mn-S-O and Fe-S-O systems, it is found that there is a coexistent stability region of MnSO4 and Fe2O3, which provides the possibility of desulfurization by selective sulfation without ferric sulfate forming. A multi-stage desulfurization system has been discussed briefly. 展开更多
关键词 predominance area diagram desulfurization manganese oxides dry FGD processes
下载PDF
Extractive oxidative desulfurization of model oil/crude oil using KSF montmorillonite-supported 12-tungstophosphoric acid 被引量:6
10
作者 Ezzat Rafiee Sadegh Sahraei Gholam Reza Moradi 《Petroleum Science》 SCIE CAS CSCD 2016年第4期760-769,共10页
12-Tungstophosphoric acid(PW) supported on KSF montmorillonite, PW/KSF, was used as catalyst for deep oxidative desulfurization(ODS) of mixed thiophenic compounds in model oil and crude oil under mild conditions u... 12-Tungstophosphoric acid(PW) supported on KSF montmorillonite, PW/KSF, was used as catalyst for deep oxidative desulfurization(ODS) of mixed thiophenic compounds in model oil and crude oil under mild conditions using hydrogen peroxide(H2O2) as an oxidizing agent. A one-factor-at-a-time method was applied for optimizing the parameters such as temperature, reaction time, amount of catalyst, type of extractant and oxidant-tosulfur compounds(S-compounds) molar ratio. The corresponding products can be easily removed from the model oil by using ethanol as the best extractant. The results showed high catalytic activity of PW/KSF in the oxidative removal of dibenzothiophene(DBT) and mixed thiophenic model oil under atmospheric pressure at 75 ℃ in a biphasic system. To investigate the oxidation and adsorption effects of crude oil composition on ODS, the effects of cyclohexene, 1,7-octadiene and o-xylene with different concentrations were studied. 展开更多
关键词 Tungstophosphoric acid MONTMORILLONITE CATALYST oxidative desulfurization Clean fuel
下载PDF
Catalytic oxidative desulfurization of fuels in acidic deep eutectic solvents with [(C_6H_(13))_3P(C_(14)H_(29))]_3PMo_(12)O_(40) as a catalyst 被引量:6
11
作者 Wei Jiang Hao Jia +5 位作者 Zhanglong Zheng Linhua Zhu Lei Dong Wei Liu Wenshuai Zhu Huaming Li 《Petroleum Science》 SCIE CAS CSCD 2018年第4期841-848,共8页
Deep eutectic solvents(DESs) are a new class of green solvents analogous to ionic liquids due to their biodegradable capacity and low cost. However, the direct extractive desulfurization of diesel oil by DESs cannot m... Deep eutectic solvents(DESs) are a new class of green solvents analogous to ionic liquids due to their biodegradable capacity and low cost. However, the direct extractive desulfurization of diesel oil by DESs cannot meet the government’s standard. In this work, amphiphilic polyoxometalates were synthesized and characterized by FT-IR and mass spectrometry.The oxidative desulfurization results showed that benzothiophene(BT) could be completely removed by employing a [(CH)P(CH)]PMoO, DES(ChCl/2 Ac) and HOsystem. It was also found that the organic cation of catalysts played a positive role in oxidative desulfurization. The reaction conditions, such as reaction temperature and time, the amount of catalyst and DES and HO/S(O/S) molar ratio, were optimized. Different sulfides were tested to determine the desulfurization selectivity of the optimal reaction system, and it was found that 97.2% of dibenzothiophene(DBT) could be removed followed by 80.7% of 4-MDBT and 76.0% of 4,6-DMDBT. After reaction, the IR spectra showed that the catalyst [(CH)P(CH)]PMoOwas stable during the reaction process and the oxidative product was dibenzothiophene sulfone(DBTO). Furthermore, the catalyst can be regenerated and recycled for four runs with little loss of activity. 展开更多
关键词 DIESEL oxidative desulfurization Deep eutectic solvents POLYOXOMETALATES H_2O_2
下载PDF
Hydrothermal Synthesis of MoO_2 and Supported MoO_2 Catalysts for Oxidative Desulfurization of Dibenzothiophene 被引量:7
12
作者 Wang Danhong Zhang Jianyong +2 位作者 Liu Ni Zhao Xin Zhang Minghui 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第4期19-23,共5页
A novel method for obtaining spherical MoO2 nanoparticles and SiO2-Al2O3 supported MoO2 by hydrothermal reduction of Mo(VI) species was studied. The obtained MoO2 catalysts show very high catalytic activity in the oxi... A novel method for obtaining spherical MoO2 nanoparticles and SiO2-Al2O3 supported MoO2 by hydrothermal reduction of Mo(VI) species was studied. The obtained MoO2 catalysts show very high catalytic activity in the oxidative desulfurization(ODS) process. The effect of hydrothermal temperature and crystallization temperature on ODS activity was investigated. The ODS activity of supported MoO2 catalysts with various MoO2 contents were also investigated. The mechanism for formation of MoO2 involving oxalic acid was proposed. 展开更多
关键词 MoO2 HYDROTHERMAL reduction oxidATIVE desulfurization NANOPARTICLE
下载PDF
Oxidative Desulfurization of Fuel Oil at Room Temperature Catalyzed by Ordered Meso-macroporous HPW/SiO2 被引量:5
13
作者 GUO Zhenran LEI Jiaheng DU Yue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第5期1071-1076,共6页
A serial of ordered meso-macroporous phosphotungstic acid(HPW) supported on SiO2 nanocomposites were successfully prepared by a homogeneous precipitation method, using monodispersed polystyrene(PS) microspheres and ca... A serial of ordered meso-macroporous phosphotungstic acid(HPW) supported on SiO2 nanocomposites were successfully prepared by a homogeneous precipitation method, using monodispersed polystyrene(PS) microspheres and cationic surfactant as structure directing agent. These nanocomposites were used as catalysts for oxidative desulfurization(ODS) of model fuel. The materials were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), N2 adsorption-desorption isothrem, X-ray diffraction(XRD), and Fourier transform infrared spectra(FTIR). The characterization results suggested that the as-prepared material possessed ordered meso-macroporous architectures with Keggin type phosphotungstic acid dispersed homogeneously in SiO2 matrix. Under the selected reaction conditions, dibenzothiophene(DBT) in model fuel can be removed within 2 h at room temperature(30 ℃). In addition, only 1.2% of efficiency lose than the fresh catalyst even after 5 cycles. 展开更多
关键词 room temperature ORDERED meso-macroporous SIO2 KEGGIN HETEROPOLYACIDS oxidative desulfurization
下载PDF
Preparation of WO3/C Composite and Its Application in Oxidative Desulfurization of Fuel 被引量:10
14
作者 Zhao Rongxiang Li Xiuping +2 位作者 Su Jianxun Shi Weiwei Gao Xiaohan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2017年第2期65-73,共9页
The WO_3/C composite was successfully prepared by calcination of a mixture of WO_3 and g-C_3N_4 at 520 ℃. The as-synthesized samples were analyzed by X-ray diffraction(XRD), electronic differential system(EDS), scann... The WO_3/C composite was successfully prepared by calcination of a mixture of WO_3 and g-C_3N_4 at 520 ℃. The as-synthesized samples were analyzed by X-ray diffraction(XRD), electronic differential system(EDS), scanning electron microscopy(SEM), infrared spectrometry(IR) and the Brunner-Emmet-Teller(BET) techniques. The WO_3/C composite, in comparison with the WO_3 and C_3N_4, features smaller particle size, bigger surface area and higher desulphurization performance. The influence of the reaction temperature, the catalyst dosage, the reaction time, the oxidant dosage, the sulfide type and the extractant dose on desulfurization reaction was studied. The results showed that the WO_3/C composite revealed a higher desulfurization activity than the WO_3. The desulfurization rate could reach up to 95.8% under optimal conditions covering a catalyst dosage of 0.02 g, a H_2O_2 amount of 0.2 mL, a 1-ethyl-3-methylimidazolium ethyl sulfate(EMIES) amount of 1.0 mL, a reaction temperature of 70 ℃ and a reaction time of 180 min. After five recycles, the desulfurization activity of catalyst did not significantly decline. 展开更多
关键词 WO3/C IONIC liquid 1-ethyl-3-methylimidazolium ETHYL SULFATE oxidATIVE desulfurization
下载PDF
Synthesis and Performance of Mesoporous Phosphotungstic Acid/Alumina Composite as a Novel Oxidative Desulfurization Catalyst 被引量:6
15
作者 颜学敏 XIONG Lin MEI Ping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第2期237-241,共5页
A series of mesoporous phosphotungstic acid/alumina composites (HPW/Al_2O_3) with various HPW contents were synthesized by evaporation-induced self-assembly method. These composites were characterized by nitrogen ad... A series of mesoporous phosphotungstic acid/alumina composites (HPW/Al_2O_3) with various HPW contents were synthesized by evaporation-induced self-assembly method. These composites were characterized by nitrogen adsorption-desorption, TEM, FTIR, and UV-vis, and were tested as catalysts in oxidation desulfurization of model fuel composed of dibenzothiophene (DBT) and hydrocarbon, using H202 as the oxidant. These composites exhibited high activity in catalytic oxidation of DBT in model fuel and good reusing ability. The best performance was achieved by using the mesoporous HPW/Al_2O_3 with 15wt% HPW content, which resulted in a DBT conversion of 98% after 2 h reaction at 343 K, and it did not show significant activity degradation after 3 recycles. Characterization results showed that the mesoporous structure of alumina and the Keggin structure of HPW were preserved in the formed composite. These results suggested that HPW/ Al_2O_3 could be a promising catalyst in oxidative desulfurization process. 展开更多
关键词 mesoporous alumina tungstophosphoric acid oxidative desulfurization CATALYST
下载PDF
Deep oxidative desulfurization of gas oil based on sandwich-type polysilicotungstate supported β-cyclodextrin composite as an efficient heterogeneous catalyst 被引量:4
16
作者 Mohammad Ali Rezvani Sahar Khandan +1 位作者 Negin Sabahi Hamid Saeidian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2418-2426,共9页
In this work,in order to obtain deep clean gas oil,a novel organic–inorganic hybrid(n-C4H9)4N)7H5Si2W18Cd4O68@β-cyclodextrin(abbreviated as TBA-Si WCd@β-CD)composite was synthesized by supporting quaternary ammoniu... In this work,in order to obtain deep clean gas oil,a novel organic–inorganic hybrid(n-C4H9)4N)7H5Si2W18Cd4O68@β-cyclodextrin(abbreviated as TBA-Si WCd@β-CD)composite was synthesized by supporting quaternary ammonium salt of sandwich-type polysilicotungstate onβ-cyclodextrin(TBA-SiWCd@β-CD)as an efficient catalyst for oxidative desulfurization(ODS)of gas oil.The successful composition of the materials explained by the formation of host–guest inclusion complex,which confirmed through FTIR,UV–vis,XRD,SEM,and EDX characterization analyses.Experimental results revealed that the levels of sulfur content and mercaptan compounds of gas oil lowered with 97%removal efficiency.Compared with the ODS treatment of gas oil,the TBA-Si WCd@β-CD composite showed an outstanding catalytic performance for the oxidation of dibenzothiophene(DBT)in the prepared model fuel.The main factors that influence the desulfurization efficiency and the kinetic study of the ODS process were investigated.The prepared heterogeneous catalyst was found to give remarkable reusability for five runs without a discernible decrease in its activity.This study suggested the potential application of the TBA-Si WCd@β-CD catalyst for removal of hazardous sulfur compounds from gas oil fuel. 展开更多
关键词 oxidATIVE desulfurization SANDWICH-TYPE POLYOXOMETALATE Β-CYCLODEXTRIN Heterogeneous catalyst
下载PDF
Oxidative Desulfurization of Non-hydrotreated Kerosene Using Hydrogen Peroxide and Acetic Acid 被引量:8
17
作者 Asghar Molaei Dehkordi Mohammad Amin Sobati Mohammad Ali Nazem 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第5期869-874,共6页
The oxidative desulfurization of a real refinery feedstock (i.e.,non-hydrotreated kerosene with total sulfur mass content of 0.16%) with a mixture of hydrogen peroxide and acetic acid was studied.The influences of var... The oxidative desulfurization of a real refinery feedstock (i.e.,non-hydrotreated kerosene with total sulfur mass content of 0.16%) with a mixture of hydrogen peroxide and acetic acid was studied.The influences of various operating parameters including reaction temperature (T),acid to sulfur molar ratio (nacid/nS),and oxidant to sulfur molar ratio (nO/nS) on the sulfur removal of kerosene were investigated.The results revealed that an increase in the reaction temperature (T) and nacid/nS enhances the sulfur removal.Moreover,there is an optimum nO/nS related to the reaction temperature and the best sulfur removal could be obtained at nO/nS=8 and 23 for the reaction temperatures of 25 and 60°C,respectively.The maximum observed sulfur removal in the present oxidative desulfurization system was 83.3%. 展开更多
关键词 oxidative desulfurization KEROSENE hydrogen peroxide acetic acid oxidation extraction
下载PDF
Oxidative Desulfurization of Simulated Gasoline over Metal Oxide-loaded Molecular Sieve 被引量:10
18
作者 陈兰菊 郭绍辉 赵地顺 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第4期520-523,共4页
A simulated gasoline consisting of model sulfur compounds of thiophene (C4H4S) and 3-methythiophene (3-MC4H4S) dissolved in n-heptane was tested for the oxidative desulfurization in the hydrogen peroxide (H202) ... A simulated gasoline consisting of model sulfur compounds of thiophene (C4H4S) and 3-methythiophene (3-MC4H4S) dissolved in n-heptane was tested for the oxidative desulfurization in the hydrogen peroxide (H202) and formic acid oxidative system over metal oxide-loaded molecular sieve. The effects of the oxidative system, loaded metal oxides, phase transfer catalyst, the addition of olefin and aromatics on sulfur removal were investigated in details. The results showed that the sulfur removal rate of simulated gasoline in the H202/formic acid system was higher than in other oxidative systems. The cerium oxide-loaded molecular sieve was found very active catalyst for oxidation of simulated gasoline in this system. The sulfur removal rates of C4H4S and 3-MC4H4S were enhanced when phase transfer catalyst (PTC) was added. However, the sulfur removal rate of simulated gasoline was reduced with the addition of olefin and aromatics. 展开更多
关键词 oxidative desulfurization simulated gasoline THIOPHENE 3-methythiophene molecular sieve
下载PDF
Polyoxometalate-based silica-supported ionic liquids for heterogeneous oxidative desulfurization in fuels 被引量:5
19
作者 Ming Zhang Miao Wang +5 位作者 Jiapeng Yang Hongping Li Jiaqi Liu Xiao Chen Wenshuai Zhu Huaming Li 《Petroleum Science》 SCIE CAS CSCD 2018年第4期882-889,共8页
With the aim of deep desulfurization, silica-supported polyoxometalate-based ionic liquids were successfully prepared by a one-pot hydrothermal process and employed in heterogeneous oxidative desulfurization of variou... With the aim of deep desulfurization, silica-supported polyoxometalate-based ionic liquids were successfully prepared by a one-pot hydrothermal process and employed in heterogeneous oxidative desulfurization of various sulfur compounds. The compositions and structures of the hybrid samples were characterized by various methods such as FT-IR, XPS, Raman,UV–Vis, wide-angle XRD and N2adsorption–desorption. The experimental results indicated that the hybrid materials presented a high dispersion of tungsten species and excellent catalytic activity for the removal of 4,6-dimethyldibenzothiophene without any organic solvent as extractant, and the sulfur removal could reach 100.0% under mild conditions.The catalytic performance on various substrates was also investigated in detail. After cycling seven cycles, the sulfur removal of the heterogeneous system still reached 93.0%. The GC-MS analysis results demonstrated that the sulfur compound was first adsorbed by the catalyst and subsequently oxidized to its corresponding sulfone. 展开更多
关键词 POLYOXOMETALATE Silica-supported ionic liquid Heterogeneous oxidative desulfurization
下载PDF
Pt nanoparticles encapsulated on V_(2)O_(5)nanosheets carriers as efficient catalysts for promoted aerobic oxidative desulfurization performance 被引量:10
20
作者 Chao Wang Wei Jiang +7 位作者 Hanxiang Chen Linhua Zhu Jing Luo Wenshu Yang Guangying Chen Zhigang Chen Wenshuai Zhu Huaming Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第4期557-562,共6页
Platinum group metals(PGMs)usually exhibit promising aerobic catalytic abilities,providing a green and feasible oxidative desulfurization method.However,often,the PGM nanoparticles(NPs)get leached,and the catalysts ar... Platinum group metals(PGMs)usually exhibit promising aerobic catalytic abilities,providing a green and feasible oxidative desulfurization method.However,often,the PGM nanoparticles(NPs)get leached,and the catalysts are deactivated.In this work,Pt NPs with particle sizes of approximately 4–5 nm were encapsulated effectively and uniformly on the surface of vanadium pentoxide(V2O5)nanosheets(with thicknesses of approximately six atomic layers)through strong metal-support interactions.The synthesized catalysts promote catalytic aerobic oxidation reactions,realizing deep desulfurization(99.1%,<5μg g^(–1))under atmospheric pressure and 110℃reaction temperature.Remarkable degrees of sulfur removal could be achieved for oils with different initial S-concentrations and substrates.Additionally,the as-prepared catalysts could be recycled for reuse at least seven times. 展开更多
关键词 oxidative desulfurization Aerobic oxidation V_(2)O_(5)nanosheets Pt nanoparticles DIBENZOTHIOPHENE
下载PDF
上一页 1 2 93 下一页 到第
使用帮助 返回顶部