Mechanisms for the evolution of a single spherical bubble subjected to sound excitation in water are studied from the viewpoint of nonlinear dynamics.First,the shooting method is combined with a Poincaré map to o...Mechanisms for the evolution of a single spherical bubble subjected to sound excitation in water are studied from the viewpoint of nonlinear dynamics.First,the shooting method is combined with a Poincaré map to obtain the fixed point for the case of forced oscillation in volume.Then,the stabilities are judged by Floquet theory and the bifurcation theorem.Moreover,the transitions of bubble oscillation in volume due to sound excitation in water are explained from the viewpoint of nonlinear dynamics in detail.The results show that with an increase in sound frequency,the period-1 oscillation becomes unstable,and oscillation behaves in a double-periodic manner,then a quasi-periodic manner,and finally chaotically.Additionally,with an increase of the amplitude of the sound pressure,the bubble eventually oscillates with chaos via a series of period-doubling bifurcations.展开更多
Enhanced gas-liquid mass transfer is significant for the desulfurization and denitration of ship exhaust gases.As a fluid device,the special structure of the fluidic oscillator generates self-excited oscillations that...Enhanced gas-liquid mass transfer is significant for the desulfurization and denitration of ship exhaust gases.As a fluid device,the special structure of the fluidic oscillator generates self-excited oscillations that can effectively enhance the mass transfer process of gas-liquid.But there are few studies on the internal gas-liquid flow.The transportation of individual bubbles in the fluidic oscillator was investigated by a high-speed camera and digital image analysis.The results show that the bubble experienced a significant deceleration process in the chamber region of the fluidic oscillator.In addition,the maximum bubble offset increased with the diameter of the initial bubble.The trajectory of the bubble showed zigzag movement due to the deflecting oscillation of the fluidic oscillator.At the same time,the deformation of the bubble was intensified by the deflecting oscillation.The deformation ratio of the bubble increased with the increase of Reynolds number.By studying the transport process of a single bubble in the fluid oscillator,it is considered that the fluid oscillator has the potential to be a new bubble generator.展开更多
The interphase mass,heat transfer efficiency,and flow resistance are strongly dependent on bubble size in gas-liquid two-phase systems,so it is very important for engineering applications to effectively control bubble...The interphase mass,heat transfer efficiency,and flow resistance are strongly dependent on bubble size in gas-liquid two-phase systems,so it is very important for engineering applications to effectively control bubble size.In this paper,the formation,growth,and detachment of single bubbles in Newtonian liquids based on capillary needles were studied in detail using a volume of fluid method.The authors investigated the effects of gas injection velocity,gravitational level,surface tension coefficient,needle radius,and liquid-phase properties(liquid viscosity and density)on the process of bubble generation,and the effects of the above factors on bubble shape,detachment diameter,and time were analyzed.The results show that an increase in gas injection rate,liquid-phase viscosity,needle radius,and surface tension coefficient can lead to an increase in bubble detachment diameter;however,an increase in liquid-phase density and gravitational level can lead to a decrease in bubble detachment diameter.It is found that the effect of the liquid-phase viscosity on bubble detachment diameter and time is slight,but the effect of gravitational level on detachment diameter and time is significant.Among all the forces,buoyancy,surface tension,and pressure are the most important ones that control the generation of bubbles.展开更多
The multi-orifice plate gas sparger, mainly composed of a multi-orifice plate and a gas chamber, is one of the most common sparger facilities.The aeration performance of multi-orifice plate has a close relation with t...The multi-orifice plate gas sparger, mainly composed of a multi-orifice plate and a gas chamber, is one of the most common sparger facilities.The aeration performance of multi-orifice plate has a close relation with the multiorifice plate configuration.In addition, the weeping phenomenon has a considerable influence on the gas chamber condition which affects the bubble detachment volume directly.This paper conducts a set of visual experiments to study the influence of multi-orifice configuration and gas chamber condition on the aeration performance of gas sparger.For multi-orifice plate, an improved theoretical model is proposed which considers the wave effect of the previous bubbles generated from adjacent orifices and the variance of the number of active bubbling orifice.A parameter is proposed to evaluate the aeration performance in order to overcome the difficulty caused by the randomness of bubble formation process.The experimental results suggest that the gas chamber filled with water is in favor of large bubble formation.The influence of the pitch of orifice on aeration performance can only be observed in high-restricted case.According to the theoretical model and experimental results, the influences of gas flow rate and the number of open orifices on the aeration performance are analyzed and a design criterion for the number of open orifice is proposed.展开更多
In an atrocious ocean environment,the lateral propulsion hole could potentially be partly out of water and capture an air cavity.Bubbles would form when the captured air cavity escapes underwater and they may affect t...In an atrocious ocean environment,the lateral propulsion hole could potentially be partly out of water and capture an air cavity.Bubbles would form when the captured air cavity escapes underwater and they may affect the performance of the sonar.The common commercial computational fluid dynamics software CFX was adopted to calculate the ambient flow field around the lateral propulsion hole generated by a moving vessel.The oscillation of the spherical bubble was based on the Rayleigh-Plesset equation and its migration was modeled using the momentum equation.The radiated noise of the oscillating bubble was also studied.The aim is that the results from this paper would provide some insight into corresponding fluid and acoustic study.展开更多
The spherical oscillation of a gas bubble in liquids is important to growth in liquids during rectified diffusions( e. g., the onset of the sonoluminescence and the enhancement of sonochemical reactions). The present ...The spherical oscillation of a gas bubble in liquids is important to growth in liquids during rectified diffusions( e. g., the onset of the sonoluminescence and the enhancement of sonochemical reactions). The present paper numerically shows stability maps( divided into four zones),in which gas bubbles maintain the linearly spherical oscillation without nonlinear disturbance of rectified diffusions within a large range of bubble radius. The critical pressures of spherical and diffusional oscillations are two decisive indexes determining the stability status. Specifically,the stability boundaries and influential factors( including acoustic parameters and gas concentration in liquids) were discussed and analyzed. The results show that the variations of gas concentration and acoustic parameters dramatically changed the stable status of the gas bubbles. The gas bubble maintained stable status when external parameters and gas concentration were set between the two critical values properly. The cases of high-frequency and low-frequency limits were also introduced at the end of the whole paper.展开更多
The bubble deformation processes were reported when gas was injected into polyme r melt flow field in another paper, the experiments showed that the deformation was severely affected by the volume of the bubble, and ...The bubble deformation processes were reported when gas was injected into polyme r melt flow field in another paper, the experiments showed that the deformation was severely affected by the volume of the bubble, and in turn, for the different bubbles, several different deformation processes were presented d uring their movement along the flow channel. In addition, we could find that the magnitude of the bubble volume was dependent upon the pressure difference of th e gas injection pressure and the melt pressure. In this paper, more experimental conditions were changed to investigate the parameters relevant to the detachmen t of bubbles from the injection nozzle. The experimental results show that the p ressure difference, the melt flow velocity as well as the melt pressure were all critical for the parameters, such as the bubble detachment time, the maximum bu bble diameters and the magnitude of the bubble volume. The morphology changes of bubble were very large when the flow field was abruptly changed, and the situat ions were more complicated.展开更多
Detachment size determination with an acoustic method has been carried out for two interacting bubble plumes formed at neighboring needles in quiescent water. Two sets of needle pairs, one with 1.5mm and 0.8mm inner d...Detachment size determination with an acoustic method has been carried out for two interacting bubble plumes formed at neighboring needles in quiescent water. Two sets of needle pairs, one with 1.5mm and 0.8mm inner diameters and the other with the equal 1.5mm inner diameters, were separately used as the bubble pair injectors in the experiments. Consequently, four typical patterns of bubble plumes interaction could be observed in the two cases of needle pair matches. Through measuring the pressure pulses radiated by the bubble pairs immediately after their 'pinching-off ' and by making use of a sophisticated relation between oscillation frequency of volume mode and radius of gas bubble, the detachment size of the bubble plumes have been determined from the amplitude/frequency spectrum of the sound pressure pulses. The experimental results demonstrate that the acoustical method is valid in both of the interacting and non-interacting circumstances in bubble field and the bubble size measurements by this acoustical method agree well with the measurements from photographic analysis. Finally, a comparison has been made on the strong and weak points of the acoustical method with the other size determination methods.展开更多
The phase transitions and the effect on this process of two factors: relative motion and the external influence of the carrier flow (pressure perturbation) are investigated. A mathematical model describing all the sta...The phase transitions and the effect on this process of two factors: relative motion and the external influence of the carrier flow (pressure perturbation) are investigated. A mathematical model describing all the stages of the phenomenon is constructed. The model includes mass, momentum and energy balance equations (both for the vapor and for the liquid) or their first integrals.展开更多
Using an appropriate approximation, we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster. The behavior of the bubbles is observed in coupled...Using an appropriate approximation, we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster. The behavior of the bubbles is observed in coupled and uncoupled states. The oscillation of bubbles inside the cluster is in a coupled state. The numerical simulation demonstrates that the secondary Bjerknes force can be influenced by the number density, initial radius, distance, driving frequency, and amplitude of ultrasound. However, if a bubble approaches a bubble cluster of the same initial radii, coupled oscillation would be induced and a repulsive force is evoked, which may be the reason why the bubble cluster can exist steadily. With the increment of the number density of the bubble cluster, a secondary Bjerknes force acting on the bubbles inside the cluster decreases due to the strong suppression of the coupled bubbles. It is shown that there may be an optimal number density for a bubble cluster which can generate an optimal cavitation effect in liquid for a stable driving ultrasound.展开更多
The detailed process of bubble generation in laser-plasma interaction has been studied by particle simulation. During the interaction between laser and plasma, a strong electrostatic field caused by charge separation ...The detailed process of bubble generation in laser-plasma interaction has been studied by particle simulation. During the interaction between laser and plasma, a strong electrostatic field caused by charge separation is observed, whose structure looks like a potential well. Electrons are accelerated to 10 MeV within some tens of femtoseconds when the laser intensity is 5×10^(18) W/cm^(2). After many electrons escape from the potentiaLwell-like structure, electron cavitons are generated. Because of laser filamentation, the intensity of the laser becomes very asymmetric, the caviton structure is squeezed and deformed, and then electron bubbles are generated, whichfinally results in ion bubble formation. It is the electron caviton and laser beam filamentation that cause bubble generation. The i0 MeV superthermal electron generation accompanied by the electron caviton is attributed to EV . E heating, which is a locally oscillating electron heating mechanism.展开更多
In this paper,the dynamic behaviors of the cavitation bubble near a fixed spherical particle during the second oscillation period are analyzed based on the high-speed photographic system.The deformation and motion of ...In this paper,the dynamic behaviors of the cavitation bubble near a fixed spherical particle during the second oscillation period are analyzed based on the high-speed photographic system.The deformation and motion of the bubble during the second period are investigated by changing the distance between the particle and the bubble and the maximum radius of the bubble.Meanwhile,the variation of the equivalent radius and the centroid motions are analyzed,and the dynamic behaviors of the bubble are categorized according to the bubble morphological characteristics during the second period.Through this research,it is found that(1)The dynamic behaviors of the bubble during the second oscillation period could be divided into three typical cases:For case 1,a bulge would exist on the bubble interface away from the particle,and for case 2,a bulge would appear on the bubble interface and evolve towards the particle,while for case 3,the bubble would be divided into two parts.(2)The larger the dimensionless distance between the particle and the bubble,the smaller the maximum bubble equivalent radius in the second period,and the shorter the second oscillation period.(3)When the bubble is close to the particle,a counter-jet appears at the bubble interface away from the particle during the rebound stage.展开更多
基金Supported by the Program for New Century Excellent Talents in University in China(No NCET-07-0685).
文摘Mechanisms for the evolution of a single spherical bubble subjected to sound excitation in water are studied from the viewpoint of nonlinear dynamics.First,the shooting method is combined with a Poincaré map to obtain the fixed point for the case of forced oscillation in volume.Then,the stabilities are judged by Floquet theory and the bifurcation theorem.Moreover,the transitions of bubble oscillation in volume due to sound excitation in water are explained from the viewpoint of nonlinear dynamics in detail.The results show that with an increase in sound frequency,the period-1 oscillation becomes unstable,and oscillation behaves in a double-periodic manner,then a quasi-periodic manner,and finally chaotically.Additionally,with an increase of the amplitude of the sound pressure,the bubble eventually oscillates with chaos via a series of period-doubling bifurcations.
基金This work was supported by the National Natural Science Foundation of China(No.22178329)the Taishan Scholars Program,the Shandong Provincial Natural Science Foundation(Nos.ZR2020ME175,ZR2020QE192)the Fundamental Research Funds for the Central Universities(No.202165002).
文摘Enhanced gas-liquid mass transfer is significant for the desulfurization and denitration of ship exhaust gases.As a fluid device,the special structure of the fluidic oscillator generates self-excited oscillations that can effectively enhance the mass transfer process of gas-liquid.But there are few studies on the internal gas-liquid flow.The transportation of individual bubbles in the fluidic oscillator was investigated by a high-speed camera and digital image analysis.The results show that the bubble experienced a significant deceleration process in the chamber region of the fluidic oscillator.In addition,the maximum bubble offset increased with the diameter of the initial bubble.The trajectory of the bubble showed zigzag movement due to the deflecting oscillation of the fluidic oscillator.At the same time,the deformation of the bubble was intensified by the deflecting oscillation.The deformation ratio of the bubble increased with the increase of Reynolds number.By studying the transport process of a single bubble in the fluid oscillator,it is considered that the fluid oscillator has the potential to be a new bubble generator.
文摘The interphase mass,heat transfer efficiency,and flow resistance are strongly dependent on bubble size in gas-liquid two-phase systems,so it is very important for engineering applications to effectively control bubble size.In this paper,the formation,growth,and detachment of single bubbles in Newtonian liquids based on capillary needles were studied in detail using a volume of fluid method.The authors investigated the effects of gas injection velocity,gravitational level,surface tension coefficient,needle radius,and liquid-phase properties(liquid viscosity and density)on the process of bubble generation,and the effects of the above factors on bubble shape,detachment diameter,and time were analyzed.The results show that an increase in gas injection rate,liquid-phase viscosity,needle radius,and surface tension coefficient can lead to an increase in bubble detachment diameter;however,an increase in liquid-phase density and gravitational level can lead to a decrease in bubble detachment diameter.It is found that the effect of the liquid-phase viscosity on bubble detachment diameter and time is slight,but the effect of gravitational level on detachment diameter and time is significant.Among all the forces,buoyancy,surface tension,and pressure are the most important ones that control the generation of bubbles.
基金Supported by the Fundamental Research Funds for the Central Universities(HEUCFM181203)
文摘The multi-orifice plate gas sparger, mainly composed of a multi-orifice plate and a gas chamber, is one of the most common sparger facilities.The aeration performance of multi-orifice plate has a close relation with the multiorifice plate configuration.In addition, the weeping phenomenon has a considerable influence on the gas chamber condition which affects the bubble detachment volume directly.This paper conducts a set of visual experiments to study the influence of multi-orifice configuration and gas chamber condition on the aeration performance of gas sparger.For multi-orifice plate, an improved theoretical model is proposed which considers the wave effect of the previous bubbles generated from adjacent orifices and the variance of the number of active bubbling orifice.A parameter is proposed to evaluate the aeration performance in order to overcome the difficulty caused by the randomness of bubble formation process.The experimental results suggest that the gas chamber filled with water is in favor of large bubble formation.The influence of the pitch of orifice on aeration performance can only be observed in high-restricted case.According to the theoretical model and experimental results, the influences of gas flow rate and the number of open orifices on the aeration performance are analyzed and a design criterion for the number of open orifice is proposed.
基金Supported by the National Science Foundation of China (11002038)Key Project of National Natural Science Funds (50939002)+2 种基金National Defense Foundation Scientific Project (B2420110011)the National Science Foundation for Young Scientists of China (51009035)Natural Science Funds of Heilongjiang Province (E201047,A200901)
文摘In an atrocious ocean environment,the lateral propulsion hole could potentially be partly out of water and capture an air cavity.Bubbles would form when the captured air cavity escapes underwater and they may affect the performance of the sonar.The common commercial computational fluid dynamics software CFX was adopted to calculate the ambient flow field around the lateral propulsion hole generated by a moving vessel.The oscillation of the spherical bubble was based on the Rayleigh-Plesset equation and its migration was modeled using the momentum equation.The radiated noise of the oscillating bubble was also studied.The aim is that the results from this paper would provide some insight into corresponding fluid and acoustic study.
基金Sponsored by the Fundamental Research Fund for Central Universities(Grant No.2017XS063)
文摘The spherical oscillation of a gas bubble in liquids is important to growth in liquids during rectified diffusions( e. g., the onset of the sonoluminescence and the enhancement of sonochemical reactions). The present paper numerically shows stability maps( divided into four zones),in which gas bubbles maintain the linearly spherical oscillation without nonlinear disturbance of rectified diffusions within a large range of bubble radius. The critical pressures of spherical and diffusional oscillations are two decisive indexes determining the stability status. Specifically,the stability boundaries and influential factors( including acoustic parameters and gas concentration in liquids) were discussed and analyzed. The results show that the variations of gas concentration and acoustic parameters dramatically changed the stable status of the gas bubbles. The gas bubble maintained stable status when external parameters and gas concentration were set between the two critical values properly. The cases of high-frequency and low-frequency limits were also introduced at the end of the whole paper.
基金Funded by the National Nature Science Foundation of China(No.19632004,No.10172074) the Research Foundation for the Doctor al Program of Higher Education of China (No.98056113) Guang dong Province Nature Science Foundation ( No. 980573, No.0401154)
文摘The bubble deformation processes were reported when gas was injected into polyme r melt flow field in another paper, the experiments showed that the deformation was severely affected by the volume of the bubble, and in turn, for the different bubbles, several different deformation processes were presented d uring their movement along the flow channel. In addition, we could find that the magnitude of the bubble volume was dependent upon the pressure difference of th e gas injection pressure and the melt pressure. In this paper, more experimental conditions were changed to investigate the parameters relevant to the detachmen t of bubbles from the injection nozzle. The experimental results show that the p ressure difference, the melt flow velocity as well as the melt pressure were all critical for the parameters, such as the bubble detachment time, the maximum bu bble diameters and the magnitude of the bubble volume. The morphology changes of bubble were very large when the flow field was abruptly changed, and the situat ions were more complicated.
基金Supported by the Post-Doctorate Science Foundation.
文摘Detachment size determination with an acoustic method has been carried out for two interacting bubble plumes formed at neighboring needles in quiescent water. Two sets of needle pairs, one with 1.5mm and 0.8mm inner diameters and the other with the equal 1.5mm inner diameters, were separately used as the bubble pair injectors in the experiments. Consequently, four typical patterns of bubble plumes interaction could be observed in the two cases of needle pair matches. Through measuring the pressure pulses radiated by the bubble pairs immediately after their 'pinching-off ' and by making use of a sophisticated relation between oscillation frequency of volume mode and radius of gas bubble, the detachment size of the bubble plumes have been determined from the amplitude/frequency spectrum of the sound pressure pulses. The experimental results demonstrate that the acoustical method is valid in both of the interacting and non-interacting circumstances in bubble field and the bubble size measurements by this acoustical method agree well with the measurements from photographic analysis. Finally, a comparison has been made on the strong and weak points of the acoustical method with the other size determination methods.
文摘The phase transitions and the effect on this process of two factors: relative motion and the external influence of the carrier flow (pressure perturbation) are investigated. A mathematical model describing all the stages of the phenomenon is constructed. The model includes mass, momentum and energy balance equations (both for the vapor and for the liquid) or their first integrals.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2010CB327803 and 2012CB921504)the National Natural Science Foundation of China (Grant Nos. 11174138, 81127901, 11174139, and 11204168)+1 种基金the Fundamental Research Funds for the Central Universities of China (Grant Nos. GK201002009 and GK201004003)the Natural Science Foundation of Shaanxi Province, China (Grant No. 2010JQ1006)
文摘Using an appropriate approximation, we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster. The behavior of the bubbles is observed in coupled and uncoupled states. The oscillation of bubbles inside the cluster is in a coupled state. The numerical simulation demonstrates that the secondary Bjerknes force can be influenced by the number density, initial radius, distance, driving frequency, and amplitude of ultrasound. However, if a bubble approaches a bubble cluster of the same initial radii, coupled oscillation would be induced and a repulsive force is evoked, which may be the reason why the bubble cluster can exist steadily. With the increment of the number density of the bubble cluster, a secondary Bjerknes force acting on the bubbles inside the cluster decreases due to the strong suppression of the coupled bubbles. It is shown that there may be an optimal number density for a bubble cluster which can generate an optimal cavitation effect in liquid for a stable driving ultrasound.
基金Supported by the Hi-Tech ICF Committee of China and the National Natural Science Foundation of China under Grant Nos.10085002 and 19885008.
文摘The detailed process of bubble generation in laser-plasma interaction has been studied by particle simulation. During the interaction between laser and plasma, a strong electrostatic field caused by charge separation is observed, whose structure looks like a potential well. Electrons are accelerated to 10 MeV within some tens of femtoseconds when the laser intensity is 5×10^(18) W/cm^(2). After many electrons escape from the potentiaLwell-like structure, electron cavitons are generated. Because of laser filamentation, the intensity of the laser becomes very asymmetric, the caviton structure is squeezed and deformed, and then electron bubbles are generated, whichfinally results in ion bubble formation. It is the electron caviton and laser beam filamentation that cause bubble generation. The i0 MeV superthermal electron generation accompanied by the electron caviton is attributed to EV . E heating, which is a locally oscillating electron heating mechanism.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51976056,52076215).
文摘In this paper,the dynamic behaviors of the cavitation bubble near a fixed spherical particle during the second oscillation period are analyzed based on the high-speed photographic system.The deformation and motion of the bubble during the second period are investigated by changing the distance between the particle and the bubble and the maximum radius of the bubble.Meanwhile,the variation of the equivalent radius and the centroid motions are analyzed,and the dynamic behaviors of the bubble are categorized according to the bubble morphological characteristics during the second period.Through this research,it is found that(1)The dynamic behaviors of the bubble during the second oscillation period could be divided into three typical cases:For case 1,a bulge would exist on the bubble interface away from the particle,and for case 2,a bulge would appear on the bubble interface and evolve towards the particle,while for case 3,the bubble would be divided into two parts.(2)The larger the dimensionless distance between the particle and the bubble,the smaller the maximum bubble equivalent radius in the second period,and the shorter the second oscillation period.(3)When the bubble is close to the particle,a counter-jet appears at the bubble interface away from the particle during the rebound stage.