Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the e...Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the effectiveness of infection control. Methods: From January 2022 to June 2023, a total of 120 patients were screened and randomly divided into a control group (routine care and hospital infection management) and a study group (optimizing details in the operating room). Results: Significant differences were found between the two groups in the data of surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, infection rates, and nursing satisfaction, with the study group showing better results (P Conclusion: The use of optimizing details in the operating room among surgeons can effectively improve surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, reduce infection occurrence, and is worth promoting.展开更多
The use of three-dimensional maps is more effective than two-dimensional maps in representing the Earth’s surface. However, the traditional methods used to create digital surface models are not efficient for capturin...The use of three-dimensional maps is more effective than two-dimensional maps in representing the Earth’s surface. However, the traditional methods used to create digital surface models are not efficient for capturing the details of Earth’s features. This is because they represent only three-dimensional objects in a single texture and do not provide a realistic representation of the real world. Additionally, there is a growing demand for up-to-date and accurate geo-information, particularly in urban areas. To address this challenge, a new technique is proposed in this study that involves integrating remote sensing, Geographic Information System, and Architecture Environment software to generate a highly-detailed three-dimensional model. The method described in this study includes several steps such as acquiring high-resolution satellite imagery, gathering ground truth data, performing radiometric and geometric corrections during image preprocessing, producing a 2D map of the region of interest, constructing a digital surface model by extending the building outlines, and transforming the model into multi-patch layers to create a 3D model for each object individually. The research findings indicate that the digital surface model obtained with comprehensive information is suitable for different purposes, such as environmental research, urban development and expansion planning, and shape recognition tasks.展开更多
文摘Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the effectiveness of infection control. Methods: From January 2022 to June 2023, a total of 120 patients were screened and randomly divided into a control group (routine care and hospital infection management) and a study group (optimizing details in the operating room). Results: Significant differences were found between the two groups in the data of surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, infection rates, and nursing satisfaction, with the study group showing better results (P Conclusion: The use of optimizing details in the operating room among surgeons can effectively improve surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, reduce infection occurrence, and is worth promoting.
文摘The use of three-dimensional maps is more effective than two-dimensional maps in representing the Earth’s surface. However, the traditional methods used to create digital surface models are not efficient for capturing the details of Earth’s features. This is because they represent only three-dimensional objects in a single texture and do not provide a realistic representation of the real world. Additionally, there is a growing demand for up-to-date and accurate geo-information, particularly in urban areas. To address this challenge, a new technique is proposed in this study that involves integrating remote sensing, Geographic Information System, and Architecture Environment software to generate a highly-detailed three-dimensional model. The method described in this study includes several steps such as acquiring high-resolution satellite imagery, gathering ground truth data, performing radiometric and geometric corrections during image preprocessing, producing a 2D map of the region of interest, constructing a digital surface model by extending the building outlines, and transforming the model into multi-patch layers to create a 3D model for each object individually. The research findings indicate that the digital surface model obtained with comprehensive information is suitable for different purposes, such as environmental research, urban development and expansion planning, and shape recognition tasks.