Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the...Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the presence of additive white Gaussian noise (AWGN) and frequency offset, a constant false alarm rate (CFAR) detector is proposed through exploitation of cyclic autocorrelation feature implied in the preamble. The frame detection can be achieved prior to bit timing recovery. The threshold setting is independent of the signal level and noise level by utilizing CFAR method. Mathematical expressions is derived in AWGN channel by considering the probability of false alarm and probability of detection, separately. Given the probability of false alarm, the mathematical relationship between the frame detection performance and EJNo of received signals is established. Ex- perimental results are also presented in accor- dance with analysis.展开更多
A dynamic learning rate Gaussian mixture model(GMM)algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance,especially in the presence...A dynamic learning rate Gaussian mixture model(GMM)algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance,especially in the presence of sudden illumination changes.The GMM is mostly used for detecting objects in complex scenes for intelligent monitoring systems.To solve this problem,a mixture Gaussian model has been built for each pixel in the video frame,and according to the scene change from the frame difference,the learning rate of GMM can be dynamically adjusted.The experiments show that the proposed method gives good results with an adaptive GMM learning rate when we compare it with GMM method with a fixed learning rate.The method was tested on a certain dataset,and tests in the case of sudden natural light changes show that our method has a better accuracy and lower false alarm rate.展开更多
基金supported by National Science Foundation of China under Grant No.61401205
文摘Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the presence of additive white Gaussian noise (AWGN) and frequency offset, a constant false alarm rate (CFAR) detector is proposed through exploitation of cyclic autocorrelation feature implied in the preamble. The frame detection can be achieved prior to bit timing recovery. The threshold setting is independent of the signal level and noise level by utilizing CFAR method. Mathematical expressions is derived in AWGN channel by considering the probability of false alarm and probability of detection, separately. Given the probability of false alarm, the mathematical relationship between the frame detection performance and EJNo of received signals is established. Ex- perimental results are also presented in accor- dance with analysis.
文摘A dynamic learning rate Gaussian mixture model(GMM)algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance,especially in the presence of sudden illumination changes.The GMM is mostly used for detecting objects in complex scenes for intelligent monitoring systems.To solve this problem,a mixture Gaussian model has been built for each pixel in the video frame,and according to the scene change from the frame difference,the learning rate of GMM can be dynamically adjusted.The experiments show that the proposed method gives good results with an adaptive GMM learning rate when we compare it with GMM method with a fixed learning rate.The method was tested on a certain dataset,and tests in the case of sudden natural light changes show that our method has a better accuracy and lower false alarm rate.