期刊文献+
共找到7,321篇文章
< 1 2 250 >
每页显示 20 50 100
Surface Defect Detection and Evaluation Method of Large Wind Turbine Blades Based on an Improved Deeplabv3+Deep Learning Model
1
作者 Wanrun Li Wenhai Zhao +1 位作者 Tongtong Wang Yongfeng Du 《Structural Durability & Health Monitoring》 EI 2024年第5期553-575,共23页
The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ... The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades. 展开更多
关键词 Structural health monitoring computer vision blade surface defects detection Deeplabv3+ deep learning model
下载PDF
Analysis of the joint detection capability of the SMILE satellite and EISCAT-3D radar 被引量:2
2
作者 JiaoJiao Zhang TianRan Sun +7 位作者 XiZheng Yu DaLin Li Hang Li JiaQi Guo ZongHua Ding Tao Chen Jian Wu Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期299-306,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite European Incoherent Scatter Sciences Association(EISCAT)-3D radar joint detection
下载PDF
Rail-Pillar Net:A 3D Detection Network for Railway Foreign Object Based on LiDAR
3
作者 Fan Li Shuyao Zhang +2 位作者 Jie Yang Zhicheng Feng Zhichao Chen 《Computers, Materials & Continua》 SCIE EI 2024年第9期3819-3833,共15页
Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,w... Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy. 展开更多
关键词 Railway foreign object light detection and ranging(LiDAR) 3D object detection PointPillars parallel attention mechanism transfer learning
下载PDF
Depth-Guided Vision Transformer With Normalizing Flows for Monocular 3D Object Detection
4
作者 Cong Pan Junran Peng Zhaoxiang Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期673-689,共17页
Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input t... Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts. 展开更多
关键词 Monocular 3D object detection normalizing flows Swin Transformer
下载PDF
MobileNetV3-CenterNet:A Target Recognition Method for Avoiding Missed Detection Effectively Based on a Lightweight Network
5
作者 Yajing Li Xiaoyan Xiong +2 位作者 Wenbin Xin Jiahai Huang Huimin Hao 《Journal of Beijing Institute of Technology》 EI CAS 2023年第1期82-94,共13页
To solve the problems in online target detection on the embedded platform,such as high missed detection rate,low accuracy,and slow speed,a lightweight target recognition method of MobileNetV3-CenterNet is proposed.Thi... To solve the problems in online target detection on the embedded platform,such as high missed detection rate,low accuracy,and slow speed,a lightweight target recognition method of MobileNetV3-CenterNet is proposed.This method combines the anchor-free Centernet network with the MobileNetV3 small network and is trained on the University at Albany Detection and Tracking(UA-DETRAC)and the Pattern Analysis,Statical Modeling and Computational Learn-ing Visual Object Classes(PASCAL VOC)07+12 standard datasets.While reducing the scale of the network model,the MobileNetV3-CenterNet model shows a good balance in the accuracy and speed of target recognition and effectively solves the problems of missing detection of dense and small targets in online detection.To verify the recognition performance of the model,it is tested on 2683 images of the UA-DETRAC and PASCAL VOC 07+12 datasets,and compared with the analysis results of CenterNet-Deep Layer Aggregation(DLA)34,CenterNet-Residual Network(ResNet)18,CenterNet-MobileNetV3-large,You Only Look Once vision 3(YOLOv3),MobileNetV2-YOLOv3,Single Shot Multibox Detector(SSD),MobileNetV2-SSD and Faster region convolutional neural network(RCNN)models.The results show that the MobileNetV3-CenterNet model accurately rec-ognized the dense targets and small targets missed by other methods,and obtained a recognition accuracy of 99.4%with a running speed at 53(on a server)and 14(on an ipad)frame/s,respectively.The MobileNetV3-CenterNet lightweight target recognition method will provide effective technical support for the target recognition of deep learning networks in embedded platforms and online detection. 展开更多
关键词 target detection MobileNetV3 CenterNet LIGHTWEIGHT
下载PDF
MFF-Net: Multimodal Feature Fusion Network for 3D Object Detection
6
作者 Peicheng Shi Zhiqiang Liu +1 位作者 Heng Qi Aixi Yang 《Computers, Materials & Continua》 SCIE EI 2023年第6期5615-5637,共23页
In complex traffic environment scenarios,it is very important for autonomous vehicles to accurately perceive the dynamic information of other vehicles around the vehicle in advance.The accuracy of 3D object detection ... In complex traffic environment scenarios,it is very important for autonomous vehicles to accurately perceive the dynamic information of other vehicles around the vehicle in advance.The accuracy of 3D object detection will be affected by problems such as illumination changes,object occlusion,and object detection distance.To this purpose,we face these challenges by proposing a multimodal feature fusion network for 3D object detection(MFF-Net).In this research,this paper first uses the spatial transformation projection algorithm to map the image features into the feature space,so that the image features are in the same spatial dimension when fused with the point cloud features.Then,feature channel weighting is performed using an adaptive expression augmentation fusion network to enhance important network features,suppress useless features,and increase the directionality of the network to features.Finally,this paper increases the probability of false detection and missed detection in the non-maximum suppression algo-rithm by increasing the one-dimensional threshold.So far,this paper has constructed a complete 3D target detection network based on multimodal feature fusion.The experimental results show that the proposed achieves an average accuracy of 82.60%on the Karlsruhe Institute of Technology and Toyota Technological Institute(KITTI)dataset,outperforming previous state-of-the-art multimodal fusion networks.In Easy,Moderate,and hard evaluation indicators,the accuracy rate of this paper reaches 90.96%,81.46%,and 75.39%.This shows that the MFF-Net network has good performance in 3D object detection. 展开更多
关键词 3D object detection multimodal fusion neural network autonomous driving attention mechanism
下载PDF
Monocular 3D object detection with Pseudo-LiDAR confidence sampling and hierarchical geometric feature extraction in 6G network
7
作者 Jianlong Zhang Guangzu Fang +3 位作者 Bin Wang Xiaobo Zhou Qingqi Pei Chen Chen 《Digital Communications and Networks》 SCIE CSCD 2023年第4期827-835,共9页
The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpow... The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpower solution compared to LiDAR solutions in the field of autonomous driving.However,this technique has some problems,i.e.,(1)the poor quality of generated Pseudo-LiDAR point clouds resulting from the nonlinear error distribution of monocular depth estimation and(2)the weak representation capability of point cloud features due to the neglected global geometric structure features of point clouds existing in LiDAR-based 3D detection networks.Therefore,we proposed a Pseudo-LiDAR confidence sampling strategy and a hierarchical geometric feature extraction module for monocular 3D object detection.We first designed a point cloud confidence sampling strategy based on a 3D Gaussian distribution to assign small confidence to the points with great error in depth estimation and filter them out according to the confidence.Then,we present a hierarchical geometric feature extraction module by aggregating the local neighborhood features and a dual transformer to capture the global geometric features in the point cloud.Finally,our detection framework is based on Point-Voxel-RCNN(PV-RCNN)with high-quality Pseudo-LiDAR and enriched geometric features as input.From the experimental results,our method achieves satisfactory results in monocular 3D object detection. 展开更多
关键词 Monocular 3D object detection Pseudo-LiDAR Confidence sampling Hierarchical geometric feature extraction
下载PDF
Fe^(3+)对细粒菱锌矿和方解石分散行为的影响
8
作者 马子龙 潘文峰 +3 位作者 廖寅飞 曹亦俊 李树磊 陈小国 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第3期923-933,共11页
方解石矿泥的覆盖和高价金属阳离子的存在是影响粒径−20μm细粒菱锌矿浮选效果的关键因素,两者通过改变菱锌矿的表面性质而恶化其分散性和浮选环境。本文选择菱锌矿浮选中常见的Fe^(3+)为研究对象,通过吸附试验、Zeta电位、XPS分析,DLV... 方解石矿泥的覆盖和高价金属阳离子的存在是影响粒径−20μm细粒菱锌矿浮选效果的关键因素,两者通过改变菱锌矿的表面性质而恶化其分散性和浮选环境。本文选择菱锌矿浮选中常见的Fe^(3+)为研究对象,通过吸附试验、Zeta电位、XPS分析,DLVO理论计算等考察Fe^(3+)对菱锌矿和方解石的分散行为规律和作用机理。结果表明:两种矿物对Fe^(3+)的吸附行为基本一致,但Fe^(3+)对菱锌矿分散行为的影响程度大于Fe^(3+)对方解石分散行为的影响。当Fe^(3+)浓度为5×10^(−4)mol/L时,菱锌矿分散行为被完全破坏。溶液化学及DLVO理论计算结果表明,Fe^(3+)吸附在矿物表面形成了羟基络合物或Fe(OH)3,导致菱锌矿颗粒间作用力小于方解石的,这是Fe^(3+)破坏菱锌矿分散行为、影响粒径−20μm细粒菱锌矿浮选的主要原因。 展开更多
关键词 fe^(3+) 细粒 菱锌矿 方解石 分散行为
下载PDF
不同形态聚乙烯微塑料对Fe^(3+)的吸附性能
9
作者 章萍 郁李 +4 位作者 曾博 李雨洁 张吴 毛玉婷 邹友琴 《南昌大学学报(工科版)》 CAS 2024年第3期276-284,306,共10页
为探究聚乙烯(PE)微塑料的不同形态对Fe^(3+)吸附性能的影响,分析两者之间的相互作用。选用低密度聚乙烯(LDPE)和线型低密度聚乙烯(LLDPE)作为不同形态PE的代表,利用SEM、FTIR、吸附比表面测试法及Zeta电位表征其结构形貌,并通过静态吸... 为探究聚乙烯(PE)微塑料的不同形态对Fe^(3+)吸附性能的影响,分析两者之间的相互作用。选用低密度聚乙烯(LDPE)和线型低密度聚乙烯(LLDPE)作为不同形态PE的代表,利用SEM、FTIR、吸附比表面测试法及Zeta电位表征其结构形貌,并通过静态吸附实验探讨不同形态PE对Fe^(3+)的吸附效果影响。结果表明LDPE相较于LLDPE具有更优的颗粒分散性、比表面积和表面负电性,其对Fe^(3+)的最大吸附量达到5.01 mg·L^(-1),PE对Fe^(3+)的吸附量随着微塑料投加量的增加先增大后减小,升温有利于吸附反应的进行。LDPE和LLDPE对Fe^(3+)的吸附均符合准一级动力学和朗缪尔模型,这表明吸附过程以单层物理吸附为主;颗粒内扩散模型表明吸附过程以表面吸附为主,且内扩散不是吸附速率控制的唯一步骤。此外,扩散力和静电力是LDPE和LLDPE吸附Fe^(3+)的主要作用机制,并且不受其线型结构的影响。 展开更多
关键词 聚乙烯 微塑料 fe^(3+) 吸附
下载PDF
Fe2O3含量对青花色料呈色的影响
10
作者 李小龙 马岚 +3 位作者 李勋 胡其国 邱辉辉 包启富 《佛山陶瓷》 CAS 2024年第7期36-39,共4页
实验以二氧化三铁、氧化钴、氧化锰、釉果为主要原料,采用单因素实验法,探究了青花色料中Fe2O3/CoO对青花瓷色度值、微观结构、晶相组成的影响。实验结果表明,随着青花色料配方中Fe2O3/CoO比值增大,青花瓷着色区域表面析出大量的1~3μm... 实验以二氧化三铁、氧化钴、氧化锰、釉果为主要原料,采用单因素实验法,探究了青花色料中Fe2O3/CoO对青花瓷色度值、微观结构、晶相组成的影响。实验结果表明,随着青花色料配方中Fe2O3/CoO比值增大,青花瓷着色区域表面析出大量的1~3μm磁铁矿晶体并且发育越来越好,使得青花瓷呈现黑色调增强蓝色调减弱的现象。 展开更多
关键词 fe2O3/CoO 青花色料 磁铁矿
下载PDF
纳米α-Fe_(2)O_(3)/壳聚糖修饰玻碳电极的电化学行为研究
11
作者 陈丽娟 黄惠 沈培辉 《化工新型材料》 CAS CSCD 北大核心 2024年第9期149-153,162,共6页
通过不同温度煅烧获得不同比表面积的α-Fe_(2)O_(3)纳米颗粒,将纳米α-Fe_(2)O_(3)与壳聚糖制成复合材料。利用滴涂法,将纳米α-Fe_(2)O_(3)/壳聚糖复合材料修饰在玻碳电极上,并通过循环伏安法研究纳米α-Fe_(2)O_(3)/壳聚糖/玻碳电极... 通过不同温度煅烧获得不同比表面积的α-Fe_(2)O_(3)纳米颗粒,将纳米α-Fe_(2)O_(3)与壳聚糖制成复合材料。利用滴涂法,将纳米α-Fe_(2)O_(3)/壳聚糖复合材料修饰在玻碳电极上,并通过循环伏安法研究纳米α-Fe_(2)O_(3)/壳聚糖/玻碳电极对铁氰化钾电化学性能的影响。结果表明:随着烧结温度从280℃提高到700℃时,α-Fe_(2)O_(3)纳米颗粒的比表面积由136.5m^(2)/g变为2.1m^(2)/g。纳米α-Fe_(2)O_(3)/壳聚糖/玻碳电极能显著提高铁氰化钾的电化学性能,与裸电极相比,氧化和还原电流均显著提高,其电化学催化性能与其纳米α-Fe_(2)O_(3)比表面积密切相关,比表面积越大峰电流就越强。在最佳实验条件下,浓度在510^(-4)~510^(-3)mol/L范围内,铁氰化钾的还原电流与浓度呈良好的线性关系,检出限为1.25×10^(-5)mol/L,该修饰电极重复性和稳定性较好。 展开更多
关键词 纳米 α-fe_(2)O_(3) 循环伏安法 电化学检测 铁氰化钾
下载PDF
Fe-3%Si合金薄带连铸板热处理过程层状异构组织演变的相场模拟研究
12
作者 杨玉芳 胡晋龙 +1 位作者 刘永博 王明涛 《材料导报》 EI CAS CSCD 北大核心 2024年第11期229-235,共7页
本研究基于Fe-3%Si合金铸轧板材组织特征,构建了不同类型柱状晶/等轴晶层状异构组织相场模型,实现了界面曲率为驱动力的情况下层状异构组织的高温粗化过程模拟,量化分析了层状异构特征对铸轧组织演化过程的影响规律。研究表明,由于晶粒... 本研究基于Fe-3%Si合金铸轧板材组织特征,构建了不同类型柱状晶/等轴晶层状异构组织相场模型,实现了界面曲率为驱动力的情况下层状异构组织的高温粗化过程模拟,量化分析了层状异构特征对铸轧组织演化过程的影响规律。研究表明,由于晶粒长径比对晶粒尖端曲率的影响,当初始状态下柱状晶长径比较高时,在界面曲率的驱动下最终会形成等轴化的多晶组织;反之则等轴化程度减小。明确了不同类型异构组织演化特征,相同退火时间下组织的等轴化程度受其层状异构特征的影响,这一现象的本质是等轴晶通过自身演化引起柱状晶两端曲率变化,诱发柱状晶间的相互“吞噬”并发生等轴化,柱状晶则在部分结构的组织中生长至带钢表面后停止生长,最终保持柱状特征。本研究进一步加深了对铸态薄带中初始凝固组织在后续热处理时演化过程的认识,对硅钢制备工艺优化具有重要的理论指导意义和实际应用价值。 展开更多
关键词 fe-3%Si合金 薄带连铸 相场模拟 组织演化
下载PDF
Fe-3%Si大尺寸合金单晶的制备及磁感系数的计算
13
作者 游清雷 蒋奇武 +2 位作者 庞树芳 贾志伟 张海利 《鞍钢技术》 CAS 2024年第3期26-31,共6页
以取向Fe-3%Si合金热轧板为原材料,采用二次再结晶法制备了尺寸大于200 mm的合金单晶。随机选取3个单晶样品剪切成7个与轧向成不同角度、尺寸为50 mm×50 mm的样品,分别对所选样品进行单晶定向,并对每个样品的横、纵向磁性能进行了... 以取向Fe-3%Si合金热轧板为原材料,采用二次再结晶法制备了尺寸大于200 mm的合金单晶。随机选取3个单晶样品剪切成7个与轧向成不同角度、尺寸为50 mm×50 mm的样品,分别对所选样品进行单晶定向,并对每个样品的横、纵向磁性能进行了测量。以单晶定向结果为依据,计算每个单晶在晶体学坐标架下的极角和辐角,提出了一种单晶磁感系数的计算方法,并基于该方法以单晶磁性能实测值及其在晶体学坐标架下的极角和辐角为输入条件,测算了Fe-3%Si合金单晶磁感应强度系数并验证了其可靠性。采用该方法对{110}晶面平行于板面的任意方向单晶的磁感应强度进行了计算,为开展多晶材料磁性能计算提供了理论依据。 展开更多
关键词 fe-3%Si合金 大尺寸单晶 磁感系数 定量计算
下载PDF
Fe/g-C_(3)N_(4)表面改性及其对CO加氢产物分布的影响 被引量:1
14
作者 孙禹 高新华 +3 位作者 马清祥 范素兵 赵天生 张建利 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第1期19-28,共10页
采用尿素热缩合法制备了氮化碳(g-C_(3)N_(4)),经H_(2)O_(2)、NH_(3)·H_(2)O处理、浸渍法负载Fe制得改性Fe/g-C_(3)N_(4),对比研究了改性前后催化剂的CO加氢性能。结合XRD、SEM、FT-IR、CO_(2)-TPD、CO-TPD、H_(2)-TPR、接触角测试... 采用尿素热缩合法制备了氮化碳(g-C_(3)N_(4)),经H_(2)O_(2)、NH_(3)·H_(2)O处理、浸渍法负载Fe制得改性Fe/g-C_(3)N_(4),对比研究了改性前后催化剂的CO加氢性能。结合XRD、SEM、FT-IR、CO_(2)-TPD、CO-TPD、H_(2)-TPR、接触角测试和N_(2)物理吸附-脱附等系列表征,探究了表面预处理对Fe/g-C3N4催化剂织构性质以及CO加氢产物分布的影响。结果表明,不同改性方法对催化剂的织构性质和CO加氢性能影响显著。尿素热缩合法制备的g-C_(3)N_(4)具有典型蜂窝状结构,Fe与g-C_(3)N_(4)相互作用较强,且高度分散;改性前后样品均呈亲水性,且H_(2)O_(2)、 NH_(3)·H_(2)O处理后亲水性增强,H_(2)O_(2)处理增强了表面羟基,NH_(3)·H_(2)O处理增加了表面氨基,促进了CO吸附,促使Fe(NCN)物相生成;预处理后的催化剂表面碱性增强。在CO加氢反应中,两步改性后的Fe/AM-g-C3N4催化剂,CO_(2)选择性降至11.61%;Fe/AM-g-C_(3)N_(4)表面碱性增强,抑制了烯烃二次加氢,烯烃选择性较高,C_(2)^(=)-C_(4)^(=)达32.37%,O/P值3.23。 展开更多
关键词 CO加氢 表面改性 fe/g-C_(3)N_(4)催化剂 产物分布
下载PDF
MOFs衍生多孔TiO_(2)/C、N掺杂Fe_(2)O_(3)复合材料的制备及其光催化性能 被引量:1
15
作者 谢倩祎 程爱华 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期47-55,共9页
将TiO_(2)加入NH_(2)-MIL-101(Fe)前驱体中,采用溶剂热法制备TiO_(2)/NH_(2)-MIL-101(Fe),进一步经高温热处理得到TiO_(2)/C、N掺杂Fe_(2)O_(3)复合材料(TiO_(2)/C、N-Fe_(2)O_(3))。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、光电子能... 将TiO_(2)加入NH_(2)-MIL-101(Fe)前驱体中,采用溶剂热法制备TiO_(2)/NH_(2)-MIL-101(Fe),进一步经高温热处理得到TiO_(2)/C、N掺杂Fe_(2)O_(3)复合材料(TiO_(2)/C、N-Fe_(2)O_(3))。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、光电子能谱(XPS)、紫外-可见分光漫反射(UV-Vis DRS)和荧光光谱(PL)等方法对所得样品的晶体结构、形貌特征、组成及光谱特性进行表征。在模拟太阳光照射下对罗丹明B(RhB)溶液进行降解,评价其光催化活性。结果表明,C、N均匀掺杂在Fe_(2)O_(3)中,TiO_(2)复合C、N掺杂Fe_(2)O_(3)后禁带宽度减小,模拟太阳光照射2.5 h后,在0.1 g/L TiO_(2)/C、N-Fe_(2)O_(3)复合材料的光催化作用下,10 mg/L罗丹明B的去除率达到95%,速率常速为0.0192 min^(-1),效果较TiO_(2)和C、N-Fe_(2)O_(3)有明显提高。所得复合材料稳定性好、可重复利用。MOFs衍生多孔C、N掺杂Fe_(2)O_(3)与TiO_(2)的复合缩短了带隙,强化了空穴与电子的分离从而提高可见光催化活性。 展开更多
关键词 fe基-MOFs 光催化 TiO_(2)/C、N掺杂fe_(2)O_(3) 罗丹明B
下载PDF
双尺度Fe_(3)Si相调控对Cu-2.5Fe-0.2Si合金组织和性能的影响 被引量:1
16
作者 于翔宇 邱文婷 +3 位作者 郑良玉 王永如 项燕龙 龚深 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第1期100-110,共11页
通过在铜铁合金中添加微量Si元素,并利用组合形变热处理工艺对亚微米级Fe_(3)Si相和纳米级Fe_(3)Si相的析出行为进行调控。结果表明:处理后的Cu-2.5Fe-0.2Si合金中形成了大量细小的再结晶晶粒,其抗拉强度、电导率和伸长率分别为401MPa、... 通过在铜铁合金中添加微量Si元素,并利用组合形变热处理工艺对亚微米级Fe_(3)Si相和纳米级Fe_(3)Si相的析出行为进行调控。结果表明:处理后的Cu-2.5Fe-0.2Si合金中形成了大量细小的再结晶晶粒,其抗拉强度、电导率和伸长率分别为401MPa、69.25%IACS和12.50%。合金中纳米级Fe_(3)Si析出相与铜基体的位向关系为[011ˉ]Cu//[11ˉ1]Fe_(3)Si。双尺度Fe_(3)Si相对合金屈服强度的提高均有贡献。其中,纳米级析出相对屈服强度的贡献值更大,约为亚微米级第二相的6倍。相比于Cu-2.5Fe合金,Si的添加促进了合金基体中铁相的析出及细化,降低了动态再结晶温度,进而实现了合金强度、电导率和塑性的协同提高。 展开更多
关键词 Cu-fe-Si合金 力学性能 电导率 fe_(3)Si相 双尺度相
下载PDF
超重力法制备FeS及其Al_(2)O_(3)负载改性后脱汞性能研究
17
作者 吕俊辉 栗秀萍 +1 位作者 于洋 王正恬 《现代化工》 CAS CSCD 北大核心 2024年第9期148-154,共7页
采用撞击流-旋转填料床(IS-RPB)结合共沉淀法获取粒径小且分布均匀的FeS粉体,利用浸渍法对其进行负载型改性得到复合材料FeS/Al_(2)O_(3),并利用其进行脱汞性能探究。利用扫描电镜、X射线衍射仪和能谱仪对复合材料的组成和形貌结构进行... 采用撞击流-旋转填料床(IS-RPB)结合共沉淀法获取粒径小且分布均匀的FeS粉体,利用浸渍法对其进行负载型改性得到复合材料FeS/Al_(2)O_(3),并利用其进行脱汞性能探究。利用扫描电镜、X射线衍射仪和能谱仪对复合材料的组成和形貌结构进行表征;利用粒度分析仪测试FeS粉体的粒径分布;利用原子吸收分光光度计测试脱汞率,考察吸附剂用量、处理时间、pH、共存离子等对脱汞效果的影响。结果表明,超重力法制备纳米FeS的最佳条件为:c(Fe^(2+))=0.10 mol/L、超重力因子为106.6、撞击初速度为9.43 m/s,此时,得到的FeS的粒径小(D50=91 nm)且分布很窄(68~114 nm)。FeS/Al_(2)O_(3)复合材料的脱汞最佳条件为:pH为6、吸附材料质量浓度为2.0 g/L、处理时间为240 min,此时,脱汞率可达99.96%,最大饱和吸附容量为1 775.9 mg/g,出水质量浓度为0.04 mg/L。 展开更多
关键词 超重力技术 feS/Al_(2)O_(3) Hg(Ⅱ) 废水
下载PDF
Fe、La掺杂和氧缺陷对CeO_(2)表面吸附As_(2)O_(3)的密度泛函理论研究
18
作者 卢鲲鹏 张凯华 张锴 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第8期1149-1161,共13页
采用密度泛函理论研究了As_(2)O_(3)(g)在Fe、La掺杂CeO_(2)(110)表面及氧缺陷LaCeO(110)表面的吸附行为,探索了LaCeO表面砷吸附能力显著高于FeCeO表面的主要原因。结果表明,As_(2)O_(3)(g)的吸附效果与吸附位点数量、吸附能、键长和电... 采用密度泛函理论研究了As_(2)O_(3)(g)在Fe、La掺杂CeO_(2)(110)表面及氧缺陷LaCeO(110)表面的吸附行为,探索了LaCeO表面砷吸附能力显著高于FeCeO表面的主要原因。结果表明,As_(2)O_(3)(g)的吸附效果与吸附位点数量、吸附能、键长和电荷转移密切相关。纯CeO_(2)表面的吸附主要为化学吸附,吸附能绝对值大于−4.22 eV,电荷转移量为(−0.19)−(−0.31)e,As_(2)O_(3)得到电荷带负电,起表面受主作用,因此吸附量较小。FeCeO(110)表面新增Fe顶位和Bridge-2桥位两个吸附位,其中,Fe顶位为化学吸附,Fe掺杂改变了FeCeO表面电子分布和晶格结构,但并未改变As_(2)O_(3)与FeCeO之间的电荷转移方向,因此,As_(2)O_(3)仍呈负离子形式吸附。LaCeO(110)表面新增了三个吸附位:La顶位、Bridge-3桥位和Hollow-2空位,La掺杂改变了As_(2)O_(3)与LaCeO之间的电荷转移方向,使得As_(2)O_(3)失电子呈正离子吸附,起表面施主作用,因此,吸附能力增强。无O_(2)环境下,单一O缺陷LaCeO(110)表面吸附能力低于完整LaCeO表面;有O_(2)环境下,O缺陷有利于As_(2)O_(3)的吸附。 展开更多
关键词 密度泛函理论 二氧化铈 fe、La掺杂 As_(2)O_(3)吸附 O缺陷
下载PDF
含酚类煤化工废水自还原Fe^(3+)类芬顿体系研究
19
作者 丛伯一 刘杨 +4 位作者 殷浩翔 张恒 周鹏 李伟 赖波 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第4期57-65,共9页
煤化工废水水质复杂,难降解有机物及氨氮含量高,给废水处理带来较大难度。现有的煤化工废水处理技术(混凝法、吸附法、膜生物反应法等)具有成本高、运行不稳定、预处理效果差等缺陷,难以满足煤化工行业发展的需要。为了高效处理煤化工废... 煤化工废水水质复杂,难降解有机物及氨氮含量高,给废水处理带来较大难度。现有的煤化工废水处理技术(混凝法、吸附法、膜生物反应法等)具有成本高、运行不稳定、预处理效果差等缺陷,难以满足煤化工行业发展的需要。为了高效处理煤化工废水,本文利用煤化工废水中酚类有机物的还原性促进Fe^(3+)/Fe^(2+)的循环,提出了一种利用Fe^(3+)/H_(2)O_(2)类芬顿体系处理煤化工废水的方法。实验结果表明:Fe^(3+)/H_(2)O_(2)体系中COD、TOC、TN、NH3-N的去除率可以达到74.63%、52.62%、10.46%、15.11%;相比于其他体系,Fe^(3+)/H_(2)O_(2)体系出水色度明显降低,UV-Vis光谱下降幅度最大,铁泥量也明显减少。Q-TOF分析结果表明:废水中主要的8种有机物为酚类或具有醛基、羰基、羧基、碳碳双键或者酯基等还原性的官能团。通过测定COD去除率和pH、Fe^(3+)/Fe^(2+)、H_(2)O_(2)等含量随时间的变化趋势,提出了Fe^(3+)/H_(2)O_(2)体系去除有机物的机理:废水中的还原性有机物将Fe^(3+)还原为Fe^(2+),促进Fe^(3+)/Fe^(2+)循环,生成的Fe^(2+)与H_(2)O_(2)发生芬顿反应,实现废水中有机污染物的去除。利用控制变量法,确定了最佳运行工况为:Fe_(2)(SO_(4))_(3)添加量为1.0 g/L、H_(2)O_(2)添加量为50 mmol/L、反应温度为30℃、初始pH为6.8。在此工况下,反应60 min后,煤化工废水的COD、TOC、TN、NH_(3)-N去除效果良好,色度明显降低,BOD_(5)和COD的比值(B/C)从0.17提升至0.47,可生化性大幅提高。本文证实了利用含酚类煤化工废水自还原Fe^(3+)/H_(2)O_(2)体系的可行性,降低了运行成本,可为后续研究及工程应用提供理论基础。 展开更多
关键词 fe^(3+) H_(2)O_(2) 类芬顿 煤化工废水 酚类化合物
下载PDF
Fe^(3+)对浮钨尾矿中受抑萤石的活化作用及其与方解石浮选分离的影响
20
作者 宁江峰 曾建红 +3 位作者 徐寒冰 耿亮 崔瑞 杨哲辉 《矿产保护与利用》 2024年第2期74-79,共6页
白钨矿、萤石和方解石的浮选中,抑制剂的加入往往会增加后续萤石、方解石浮选分离的难度。通过浮选实验、吸附量测试、Zeta电位测量及溶液化学计算,研究了Fe^(3+)对浮钨尾矿中受抑萤石的活化作用及其与方解石浮选分离的影响及机理。单... 白钨矿、萤石和方解石的浮选中,抑制剂的加入往往会增加后续萤石、方解石浮选分离的难度。通过浮选实验、吸附量测试、Zeta电位测量及溶液化学计算,研究了Fe^(3+)对浮钨尾矿中受抑萤石的活化作用及其与方解石浮选分离的影响及机理。单矿物浮选实验结果表明,Fe^(3+)单独添加对方解石的抑制作用远大于萤石。水玻璃单独添加时,两种矿物同时被抑制。在pH为8.0、水玻璃用量为300 mg/L、油酸钠用量为1.5×10^(-4)mol/L的条件下,萤石、方解石浮选回收率分别为13.49%和16.83%。水玻璃体系中引入Fe^(3+),在pH为8.0、水玻璃用量为75 mg/L、Fe^(3+)用量为3×10^(-4)mol/L、油酸钠用量为1.5×10^(-4)mol/L的条件下,萤石、方解石浮选回收率分别为82.01%和15.64%,Fe^(3+)的加入提高了水玻璃体系中受抑萤石的可浮性,选择性活化了萤石,机理分析表明,Fe^(3+)更容易在方解石表面发生吸附,阻碍了油酸钠的吸附。水玻璃体系中加入Fe^(3+)后,溶液中Fe^(3+)的水解组分Fe(OH)^(2+)、Fe(OH)_(4)^(-)选择性地与萤石表面水玻璃的水解组分Si(OH)_(4)、SiO(OH)_(3)^(-)发生化学反应,生成Fe^(+)-水玻璃聚合物,使得萤石表面的水玻璃水解组分含量减少,恢复了萤石的可浮性,而Fe^(+)-水玻璃聚合物则较多地在方解石表面发生吸附,更加抑制了方解石的浮选。 展开更多
关键词 萤石 方解石 fe^(3+) 活化作用 浮选
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部