The admission control scheme is investigated for a FIFO self-similar queuing system with Quality of Service (QoS) performance guarantees. Since the self-similar queuing system performance analysis is often carried out...The admission control scheme is investigated for a FIFO self-similar queuing system with Quality of Service (QoS) performance guarantees. Since the self-similar queuing system performance analysis is often carried out under the condition of infinite buffer, it is difficult to deduce the upper boundary of buffer overflow probability. To overcome this shortcoming, a simple overflow condition is proposed, which defines a buffer overflow occurrence whenever the arrival rate exceeds the service rate. The analytic formula for the buffer overflow probability upper boundary is easily obtained under this condition. The required bandwidth upper boundary with long-range dependence input and determined overflow probability is then derived from this formula. Based on the above analytic formulas, the upper boundaries of the admission control regions for homogeneous and heterogeneous long-range dependence traffic sources are separately obtained. Finally, an effective admission control scheme for long-range dependence input is proposed. Simulation studies with real traffic have confirmed the validity of these results.展开更多
Floating wastes in rivers have specific characteristics such as small scale,low pixel density and complex backgrounds.These characteristics make it prone to false and missed detection during image analysis,thus result...Floating wastes in rivers have specific characteristics such as small scale,low pixel density and complex backgrounds.These characteristics make it prone to false and missed detection during image analysis,thus resulting in a degradation of detection performance.In order to tackle these challenges,a floating waste detection algorithm based on YOLOv7 is proposed,which combines the improved GFPN(Generalized Feature Pyramid Network)and a long-range attention mechanism.Firstly,we import the improved GFPN to replace the Neck of YOLOv7,thus providing more effective information transmission that can scale into deeper networks.Secondly,the convolution-based and hardware-friendly long-range attention mechanism is introduced,allowing the algorithm to rapidly generate an attention map with a global receptive field.Finally,the algorithm adopts the WiseIoU optimization loss function to achieve adaptive gradient gain allocation and alleviate the negative impact of low-quality samples on the gradient.The simulation results reveal that the proposed algorithm has achieved a favorable average accuracy of 86.3%in real-time scene detection tasks.This marks a significant enhancement of approximately 6.3%compared with the baseline,indicating the algorithm's good performance in floating waste detection.展开更多
Anomaly detection of privileged processes is one of the most important means to safeguard the host and system security. The key problem for improving detection performance is to identify local behavior of the short se...Anomaly detection of privileged processes is one of the most important means to safeguard the host and system security. The key problem for improving detection performance is to identify local behavior of the short sequences in traces of system calls accurately. An alternative modeling method was proposed based on the typical pattern matching of short sequences, which builds upon the concepts of short sequences with context dependency and the specially designed aggregation algorithm. The experimental results indicate that the modeling method considering the context dependency improves clearly the sensitive decision threshold as compared with the previous modeling method.展开更多
In the field of data-driven bearing fault diagnosis,convolutional neural network(CNN)has been widely researched and applied due to its superior feature extraction and classification ability.However,the convolutional o...In the field of data-driven bearing fault diagnosis,convolutional neural network(CNN)has been widely researched and applied due to its superior feature extraction and classification ability.However,the convolutional operation could only process a local neighborhood at a time and thus lack the ability of capturing long-range dependencies.Therefore,building an efficient learning method for long-range dependencies is crucial to comprehend and express signal features considering that the vibration signals obtained in a real industrial environment always have strong instability,periodicity,and temporal correlation.This paper introduces nonlocal mean to the CNN and presents a 1D nonlocal block(1D-NLB)to extract long-range dependencies.The 1D-NLB computes the response at a position as a weighted average value of the features at all positions.Based on it,we propose a nonlocal 1D convolutional neural network(NL-1DCNN)aiming at rolling bearing fault diagnosis.Furthermore,the 1D-NLB could be simply plugged into most existing deep learning architecture to improve their fault diagnosis ability.Under multiple noise conditions,the 1D-NLB improves the performance of the CNN on the wheelset bearing data set of high-speed train and the Case Western Reserve University bearing data set.The experiment results show that the NL-1DCNN exhibits superior results compared with six state-of-the-art fault diagnosis methods.展开更多
This research presents an algorithm for face detection based on color images using three main components: skin color characteristics, hair color characteristics, and a decision structure which converts the obtained i...This research presents an algorithm for face detection based on color images using three main components: skin color characteristics, hair color characteristics, and a decision structure which converts the obtained information from skin and hair regions to labels for identifying the object dependencies and rejecting many of the incorrect decisions. Here we use face color characteristics that have a good resistance against the face rotations and expressions. This algorithm is also capable of being combined with other methods of face recognition in each stage to improve the detection.展开更多
Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for position...Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for positioning of general aviation aircraft.Aim to acquire the accurate position information of aircraft and detect anomaly data,the ADS-B anomaly data detection model based on deep learning and difference of Gaussian(DoG)approach is proposed.First,according to the characteristic of ADS-B data,the ADS-B position data are transformed into the coordinate system.And the origin of the coordinate system is set up as the take-off point.Then,based on the kinematic principle,the ADS-B anomaly data can be removed.Moreover,the details of the ADS-B position data can be got by the DoG approach.Finally,the long short-term memory(LSTM)neural network is used to optimize the recurrent neural network(RNN)with severe gradient reduction for processing ADS-B data.The position data of ADS-B are reconstructed by the sequence to sequence(seq2seq)model which is composed of LSTM neural network,and the reconstruction error is used to detect the anomalous data.Based on the real flight data of general aviation aircraft,the simulation results show that the anomaly data can be detected effectively by the proposed method of reconstructing ADS-B data with the seq2seq model,and its running time is reduced.Compared with the RNN,the accuracy of anomaly detection is increased by 2.7%.The performance of the proposed model is better than that of the traditional anomaly detection models.展开更多
Current Chinese event detection methods commonly use word embedding to capture semantic representation,but these methods find it difficult to capture the dependence relationship between the trigger words and other wor...Current Chinese event detection methods commonly use word embedding to capture semantic representation,but these methods find it difficult to capture the dependence relationship between the trigger words and other words in the same sentence.Based on the simple evaluation,it is known that a dependency parser can effectively capture dependency relationships and improve the accuracy of event categorisation.This study proposes a novel architecture that models a hybrid representation to summarise semantic and structural information from both characters and words.This model can capture rich semantic features for the event detection task by incorporating the semantic representation generated from the dependency parser.The authors evaluate different models on kbp 2017 corpus.The experimental results show that the proposed method can significantly improve performance in Chinese event detection.展开更多
To combat increasingly sophisticated cyber attacks,the security community has proposed and deployed a large body of threat detection approaches to discover malicious behaviors on host systems and attack payloads in ne...To combat increasingly sophisticated cyber attacks,the security community has proposed and deployed a large body of threat detection approaches to discover malicious behaviors on host systems and attack payloads in network traffic.Several studies have begun to focus on threat detection methods based on provenance data of host-level event tracing.On the other side,with the significant development of big data and artificial intelligence technologies,large-scale graph computing has been widely used.To this end,kinds of research try to bridge the gap between threat detection based on host log provenance data and graph algorithm,and propose the threat detection algorithm based on system provenance graph.These approaches usually generate the system provenance graph via tagging and tracking of system events,and then leverage the characteristics of the graph to conduct threat detection and attack investigation.For the purpose of deeply understanding the correctness,effectiveness,and efficiency of different graph-based threat detection algorithms,we pay attention to mainstream threat detection methods based on provenance graphs.We select and implement 5 state-of-the-art threat detection approaches among a large number of studies as evaluation objects for further analysis.To this end,we collect about 40GB of host-level raw log data in a real-world IT environment,and simulate 6 types of cyber attack scenarios in an isolated environment for malicious provenance data to build our evaluation datasets.The crosswise comparison and longitudinal assessment interpret in detail these detection approaches can detect which attack scenarios well and why.Our empirical evaluation provides a solid foundation for the improvement direction of the threat detection approach.展开更多
隐喻是人类语言中经常出现的一种特殊现象,隐喻识别对于自然语言处理各项任务来说具有十分基础和重要的意义。针对中文领域的隐喻识别任务,该文提出了一种基于句法感知图卷积神经网络和ELECTRA的隐喻识别模型(S yntax-a ware G CN with ...隐喻是人类语言中经常出现的一种特殊现象,隐喻识别对于自然语言处理各项任务来说具有十分基础和重要的意义。针对中文领域的隐喻识别任务,该文提出了一种基于句法感知图卷积神经网络和ELECTRA的隐喻识别模型(S yntax-a ware G CN with E LECTRA,SaGE)。该模型从语言学出发,使用ELECTRA和Transformer编码器抽取句子的语义特征,将句子按照依存关系组织成一张图并使用图卷积神经网络抽取其句法特征,在此基础上对两类特征进行融合以进行隐喻识别。该模型在CCL 2018中文隐喻识别评测数据集上以85.22%的宏平均F 1值超越了此前的最佳成绩,验证了融合语义信息和句法信息对于隐喻识别任务具有重要作用。展开更多
文摘The admission control scheme is investigated for a FIFO self-similar queuing system with Quality of Service (QoS) performance guarantees. Since the self-similar queuing system performance analysis is often carried out under the condition of infinite buffer, it is difficult to deduce the upper boundary of buffer overflow probability. To overcome this shortcoming, a simple overflow condition is proposed, which defines a buffer overflow occurrence whenever the arrival rate exceeds the service rate. The analytic formula for the buffer overflow probability upper boundary is easily obtained under this condition. The required bandwidth upper boundary with long-range dependence input and determined overflow probability is then derived from this formula. Based on the above analytic formulas, the upper boundaries of the admission control regions for homogeneous and heterogeneous long-range dependence traffic sources are separately obtained. Finally, an effective admission control scheme for long-range dependence input is proposed. Simulation studies with real traffic have confirmed the validity of these results.
基金Supported by the Science Foundation of the Shaanxi Provincial Department of Science and Technology,General Program-Youth Program(2022JQ-695)the Scientific Research Program Funded by Education Department of Shaanxi Provincial Government(22JK0378)+1 种基金the Talent Program of Weinan Normal University(2021RC20)the Educational Reform Research Project(JG202342)。
文摘Floating wastes in rivers have specific characteristics such as small scale,low pixel density and complex backgrounds.These characteristics make it prone to false and missed detection during image analysis,thus resulting in a degradation of detection performance.In order to tackle these challenges,a floating waste detection algorithm based on YOLOv7 is proposed,which combines the improved GFPN(Generalized Feature Pyramid Network)and a long-range attention mechanism.Firstly,we import the improved GFPN to replace the Neck of YOLOv7,thus providing more effective information transmission that can scale into deeper networks.Secondly,the convolution-based and hardware-friendly long-range attention mechanism is introduced,allowing the algorithm to rapidly generate an attention map with a global receptive field.Finally,the algorithm adopts the WiseIoU optimization loss function to achieve adaptive gradient gain allocation and alleviate the negative impact of low-quality samples on the gradient.The simulation results reveal that the proposed algorithm has achieved a favorable average accuracy of 86.3%in real-time scene detection tasks.This marks a significant enhancement of approximately 6.3%compared with the baseline,indicating the algorithm's good performance in floating waste detection.
文摘Anomaly detection of privileged processes is one of the most important means to safeguard the host and system security. The key problem for improving detection performance is to identify local behavior of the short sequences in traces of system calls accurately. An alternative modeling method was proposed based on the typical pattern matching of short sequences, which builds upon the concepts of short sequences with context dependency and the specially designed aggregation algorithm. The experimental results indicate that the modeling method considering the context dependency improves clearly the sensitive decision threshold as compared with the previous modeling method.
基金supported by the State Key Laboratory of Traction Power,Southwest Jiaotong University (TPL2104)the National Natural Science Foundation of China (61833002).
文摘In the field of data-driven bearing fault diagnosis,convolutional neural network(CNN)has been widely researched and applied due to its superior feature extraction and classification ability.However,the convolutional operation could only process a local neighborhood at a time and thus lack the ability of capturing long-range dependencies.Therefore,building an efficient learning method for long-range dependencies is crucial to comprehend and express signal features considering that the vibration signals obtained in a real industrial environment always have strong instability,periodicity,and temporal correlation.This paper introduces nonlocal mean to the CNN and presents a 1D nonlocal block(1D-NLB)to extract long-range dependencies.The 1D-NLB computes the response at a position as a weighted average value of the features at all positions.Based on it,we propose a nonlocal 1D convolutional neural network(NL-1DCNN)aiming at rolling bearing fault diagnosis.Furthermore,the 1D-NLB could be simply plugged into most existing deep learning architecture to improve their fault diagnosis ability.Under multiple noise conditions,the 1D-NLB improves the performance of the CNN on the wheelset bearing data set of high-speed train and the Case Western Reserve University bearing data set.The experiment results show that the NL-1DCNN exhibits superior results compared with six state-of-the-art fault diagnosis methods.
文摘This research presents an algorithm for face detection based on color images using three main components: skin color characteristics, hair color characteristics, and a decision structure which converts the obtained information from skin and hair regions to labels for identifying the object dependencies and rejecting many of the incorrect decisions. Here we use face color characteristics that have a good resistance against the face rotations and expressions. This algorithm is also capable of being combined with other methods of face recognition in each stage to improve the detection.
基金supported by the National Key R&D Program of China(No.2018AAA0100804)the Talent Project of Revitalization Liaoning(No.XLYC1907022)+5 种基金the Key R&D Projects of Liaoning Province(No.2020JH2/10100045)the Capacity Building of Civil Aviation Safety(No.TMSA1614)the Natural Science Foundation of Liaoning Province(No.2019-MS-251)the Scientific Research Project of Liaoning Provincial Department of Education(Nos.L201705,L201716)the High-Level Innovation Talent Project of Shenyang(No.RC190030)the Second Young and Middle-Aged Talents Support Program of Shenyang Aerospace University.
文摘Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for positioning of general aviation aircraft.Aim to acquire the accurate position information of aircraft and detect anomaly data,the ADS-B anomaly data detection model based on deep learning and difference of Gaussian(DoG)approach is proposed.First,according to the characteristic of ADS-B data,the ADS-B position data are transformed into the coordinate system.And the origin of the coordinate system is set up as the take-off point.Then,based on the kinematic principle,the ADS-B anomaly data can be removed.Moreover,the details of the ADS-B position data can be got by the DoG approach.Finally,the long short-term memory(LSTM)neural network is used to optimize the recurrent neural network(RNN)with severe gradient reduction for processing ADS-B data.The position data of ADS-B are reconstructed by the sequence to sequence(seq2seq)model which is composed of LSTM neural network,and the reconstruction error is used to detect the anomalous data.Based on the real flight data of general aviation aircraft,the simulation results show that the anomaly data can be detected effectively by the proposed method of reconstructing ADS-B data with the seq2seq model,and its running time is reduced.Compared with the RNN,the accuracy of anomaly detection is increased by 2.7%.The performance of the proposed model is better than that of the traditional anomaly detection models.
基金973 Program,Grant/Award Number:2014CB340504The State Key Program of National Natural Science of China,Grant/Award Number:61533018+3 种基金National Natural Science Foundation of China,Grant/Award Number:61402220The Philosophy and Social Science Foundation of Hunan Province,Grant/Award Number:16YBA323Natural Science Foundation of Hunan Province,Grant/Award Number:2020JJ4525Scientific Research Fund of Hunan Provincial Education Department,Grant/Award Number:18B279,19A439。
文摘Current Chinese event detection methods commonly use word embedding to capture semantic representation,but these methods find it difficult to capture the dependence relationship between the trigger words and other words in the same sentence.Based on the simple evaluation,it is known that a dependency parser can effectively capture dependency relationships and improve the accuracy of event categorisation.This study proposes a novel architecture that models a hybrid representation to summarise semantic and structural information from both characters and words.This model can capture rich semantic features for the event detection task by incorporating the semantic representation generated from the dependency parser.The authors evaluate different models on kbp 2017 corpus.The experimental results show that the proposed method can significantly improve performance in Chinese event detection.
基金supported by National Natural Science Foundation of China (No. U1736218)National Key R&D Program of China (No. 2018YFB0804704)partially supported by CNCERT/CC
文摘To combat increasingly sophisticated cyber attacks,the security community has proposed and deployed a large body of threat detection approaches to discover malicious behaviors on host systems and attack payloads in network traffic.Several studies have begun to focus on threat detection methods based on provenance data of host-level event tracing.On the other side,with the significant development of big data and artificial intelligence technologies,large-scale graph computing has been widely used.To this end,kinds of research try to bridge the gap between threat detection based on host log provenance data and graph algorithm,and propose the threat detection algorithm based on system provenance graph.These approaches usually generate the system provenance graph via tagging and tracking of system events,and then leverage the characteristics of the graph to conduct threat detection and attack investigation.For the purpose of deeply understanding the correctness,effectiveness,and efficiency of different graph-based threat detection algorithms,we pay attention to mainstream threat detection methods based on provenance graphs.We select and implement 5 state-of-the-art threat detection approaches among a large number of studies as evaluation objects for further analysis.To this end,we collect about 40GB of host-level raw log data in a real-world IT environment,and simulate 6 types of cyber attack scenarios in an isolated environment for malicious provenance data to build our evaluation datasets.The crosswise comparison and longitudinal assessment interpret in detail these detection approaches can detect which attack scenarios well and why.Our empirical evaluation provides a solid foundation for the improvement direction of the threat detection approach.
文摘隐喻是人类语言中经常出现的一种特殊现象,隐喻识别对于自然语言处理各项任务来说具有十分基础和重要的意义。针对中文领域的隐喻识别任务,该文提出了一种基于句法感知图卷积神经网络和ELECTRA的隐喻识别模型(S yntax-a ware G CN with E LECTRA,SaGE)。该模型从语言学出发,使用ELECTRA和Transformer编码器抽取句子的语义特征,将句子按照依存关系组织成一张图并使用图卷积神经网络抽取其句法特征,在此基础上对两类特征进行融合以进行隐喻识别。该模型在CCL 2018中文隐喻识别评测数据集上以85.22%的宏平均F 1值超越了此前的最佳成绩,验证了融合语义信息和句法信息对于隐喻识别任务具有重要作用。