5 different forests of Pinus massoniana, Schima superba, Liquidambar formosana, P. massoniana × S. superba, P. massoniana × L. formosana as the research object were set up to study the Cr, Cu and Zn content ...5 different forests of Pinus massoniana, Schima superba, Liquidambar formosana, P. massoniana × S. superba, P. massoniana × L. formosana as the research object were set up to study the Cr, Cu and Zn content of degraded red soil region in subtropics. The soil heavy metal pollution degree was evaluated by national environmental quality standard (II class). The results showed that three soil metals of P. massoniana × S. superba were the highest, and the soil metals enrichment ability was strong. The order of single factor pollution index of metal elements was Cu (1.38) > Cr (0.81) > Zn (0.42), and moderately pollution, pollution warning and no pollution, respectively. There was no significant correlation between three soil heavy metals and soil total carbon (TC), total nitrogen (TN) and total phosphorus (TP). These results suggested that the accumulation of heavy metal elements was not derived from the parent material of soil. There was a significant positive correlation between the three metal elements which indicated that the sources of the three elements were similar. The structural equation model showed that the direct and indirect effects among the influencing factors ultimately affected the activity of heavy metals by cascade effects.展开更多
The burial of waste in developing countries, which is often carried out without respect for environmental standards, constitutes a risk of contamination of soils and even groundwater given the toxic elements they cont...The burial of waste in developing countries, which is often carried out without respect for environmental standards, constitutes a risk of contamination of soils and even groundwater given the toxic elements they contain. The objective of this work is to carry out a study of the retention of heavy metals through the contribution of cattle manure to soil samples from the final Agoè Nyivé landfill in Lomé, Togo. Soil samples from the final landfill were taken from the surface and depth at several locations to form a composite sample. The amendment of the composite sample was carried out with bovine manure on the mock-up in the Laboratory for six months. The determination of the total contents of heavy metals by the atomic absorption spectrophotometer (SAA) on the composite sample showed high contents exceeding the thresholds recommended by the AFNOR NF U 44-041 standard. Sequential extraction on these composite samples showed that the mobile portions of lead, cadmium, copper and zinc are respectively estimated at 78.06%, 50%, 28.89% and 91.59%. The bovine manure used to amend the landfill samples presents physicochemical parameters that can contribute to rendering heavy metals immobile in the soil matrix under natural conditions. The addition of manure initially made it possible to increase the values of pH, electrical conductivity, cation exchange capacity and organic matter, which promote the retention of heavy metals. Secondly, the addition of manure made it possible to reduce the mobile portion of the heavy metals studied;from 78.06% to 14.39% for lead, from 50% to 11.52% for cadmium, from 28.89% to almost 0% for copper and from 91.15% to 80.58% for zinc. The use of cattle manure as an amendment on the composite sample was decisive in reducing the mobility of heavy metals in the polluted soils of the final landfill.展开更多
Exploring transport patterns of soil contaminants is essential for solving the problem of heavy metal contamination in mine soils.In this study,contamination of Pb,Zn,and Cd in the mountain soils of the lead–zinc ore...Exploring transport patterns of soil contaminants is essential for solving the problem of heavy metal contamination in mine soils.In this study,contamination of Pb,Zn,and Cd in the mountain soils of the lead–zinc ore mines in Ganxi Township,Hengdong County,Hunan Province,China was investigated,and their transport patterns were further explored using a soil-column model and numerical simulation techniques.In total,111 mine soil samples were collected and placed into six experimental soil columns.By controlling the water flow,a control soil column group(CK),two mixed soil columns X1 with daily water flows of 1 and 5 L,and three mixed soil columns X3 with daily water flows of 2,3,and 4 L were evaluated.The results showed that the residual fraction of Pb accounted for 71.93%of the content on average,whereas the exchangeable fractions of Zn,Cd,and Fe-Mn oxide-bound fractions of Zn and Cd accounted for 28.60%,31.07%,and 43.2%and 53.54%of the content,respectively.Pb,Zn,and Cd in the soils of the CK,X1,and X3 groups mainly were accumulated at a depth from approximately 0 to 20 cm,and the content at this depth accounted for 60.09%of that at a 0~40 cm depth.The soil at a depth range of 0~10 cm was most seriously contaminated,and the proportion of content was 32.39%of that at a 0~40 cm depth.Numerical simulation showed that on the 5 th day,the pollutant transport range was 0~24 cm,and on the 9 th day,the pollutant transport range exceeded 40 cm.On the 15 th day,the transport capacity of pollutants at depths of 0~40 cm was close to the stable state,but the soil at a depth of 0~10 cm was still heavily polluted.These results reflect the transport pattern of heavy metal pollutants in the soil of lead–zinc ore mines and may provide a reliable scientific support for the prevention of heavy metal contamination in mine environments.展开更多
Because of human activities, urban dustfall and soil in China have been polluted by heavy metals in different degrees. However, the type and pollution degree of heavy metal hazard are different among cities. Based on ...Because of human activities, urban dustfall and soil in China have been polluted by heavy metals in different degrees. However, the type and pollution degree of heavy metal hazard are different among cities. Based on data about the heavy metal pollution of urban soil and dustfall as well as related information inves- tigated, the present situation of heavy metal pollution in soil and dustfall in 23 regions of China were summarized, and some suggestions were put forward accord- ing to the existing problems of research on heavy metal pollution, aiming to provide reference for government decision-making and related research in future.展开更多
In recent years, the problem of environmental pollution caused by microplastics has attracted widespread attention. This paper reviews the latest research progress in terms of the source, content and distribution char...In recent years, the problem of environmental pollution caused by microplastics has attracted widespread attention. This paper reviews the latest research progress in terms of the source, content and distribution characteristics, harm, and detection technology of soil microplastics by referring to the relevant literature on soil microplastics worldwide. It concludes that:(1) Existing studies worldwide have detected the presence of microplastics in soil, water, and atmosphere, and the use of agricultural films, sewage sludge,and other man-made activities are the main sources of microplastics in soil;(2) microplastics can adsorb heavy metals, persistent organic pollutants and antibiotics in soil, change the physical and chemical properties of soil. This will result in composite pollution and harm to the ecosystem;(3) microplastics in soil not only can destroy the activity of key soil microorganisms, but also enter the body of crops and soil animals, affecting normal growth of crops and soil animals, and further threaten human health;(4) at present, there is no unified operating standard for the sampling, processing, and detection process of microplastics. Analysis methods such as visual inspection, spectroscopy, and thermal analysis have both advantages and disadvantages, and emerging detection technologies require urgent development.Microplastics have become a new pollutant in soil and their distribution characteristics are closely related to human activities. They pollute the environment and threaten human health through the food chain.Although related research on soil microplastics has just begun, it will become the focus of research in the future.展开更多
In a single sample plot,the total amount of heavy metals in the soil could not necessarily reflect the contents of their effective states.This must be considered when attempting to determine the degree of soil heavy-m...In a single sample plot,the total amount of heavy metals in the soil could not necessarily reflect the contents of their effective states.This must be considered when attempting to determine the degree of soil heavy-metal pollution in an area.In the present study,the soil around the molybdenum mining area in Huludao,China,was surveyed and sampled to evaluate soil heavy-metal pollution using the Nemerow multifactor pollution index method.The Tessier continuous extraction method was used to analyze the distribution of heavy-metal forms'and their content changes in the soil of this area.Thus,the bioactivity of heavy metals in the soil,the absorption of heavy metals by plants,and the distribution of heavy metals in plants were explored to provide data supporting the use of phytoremediation technology to treat the heavy-metal pollution in the molybdenum mining area and develop ecological restoration strategies for the area's wastelands.The pollution index results indicate that heavy-metal pollution in the soil around the tailings pond is severe,mainly due to Pb and Zn heavy metals.Heavy-metal pollution in the surrounding land is mainly due to Cd and Zn.Content analysis of the heavy-metal forms/states in soils shows that exchangeable forms,which are most effective and toxic to plants,of the following metals are highest in the following areas:Cd,Cu,and Zn in the mountains around the stope;Zn,Mo,and Cu in the cultivated land around the dump;and Cd,Zn,and Mo in the cultivated land around the tailings pond.The pollution index analysis provides a basic overview of soil heavy-metal pollution across the entire mining area.However,content analysis of heavy-metal forms/states better reflects the relationship between the availability of heavy metals in the soil and the effectiveness of plants.Thus,the latter analysis can help ensure that phytoremediation strategies are adequately targeted,science-based,and effective.展开更多
Heavy metals in agricultural soil pose human health risks through food consumption. In a novel study for Trinidad, concentration and pollution index levels of heavy metals were assessed from 18 agricultural farms usin...Heavy metals in agricultural soil pose human health risks through food consumption. In a novel study for Trinidad, concentration and pollution index levels of heavy metals were assessed from 18 agricultural farms using the X-Ray fluorescence technique, then to evaluate the Geo-accumulation and Nemerow’s Integrated Pollution indexes. Toxic elements Pb and As were present but soil quality due to anthropogenic input was found as unpolluted. Overall heavy metal pollution was classified at a precautionary level for 33% of farms, slightly polluted for 61% and moderately polluted for 6% of the farms assessed, thus, regular monitoring and mitigation measures are important for food safety and human health in Trinidad.展开更多
A total of 219 agricultural soil and 48 vegetable samples were collected from the midstream and downstream of the Xiangjiang River(the Hengyang-Changsha section)in Hunan Province.The accumulation characteristics,spa...A total of 219 agricultural soil and 48 vegetable samples were collected from the midstream and downstream of the Xiangjiang River(the Hengyang-Changsha section)in Hunan Province.The accumulation characteristics,spatial distribution and potential risk of heavy metals in the agricultural soils and vegetables were depicted.There are higher accumulations of heavy metals such as As,Cd,Cu,Ni,Pb and Zn in agricultural soils,and the contents of Cd(2.44 mg kg^-1 ),Pb(65.00 mg kg^-1 )and Zn(144.13 mg kg^-1 )are 7.97,3.69 and 1.63 times the corresponding background contents in soils of Hunan Province,respectively. 13.2%of As,68.5%of Cd,2.7%of Cu,2.7%of Ni,8.7%of Pb and 15.1%of Zn in soil samples from the investigated sites exceeded the maximum allowable heavy metal contents in the China Environmental Quality Standard for Soils(GB15618-1995,Grade Ⅱ).The pollution characteristics of multi-metals in soils are mainly due to Cd.The contents of As,Cd,Cu,Pb and Zn in vegetable soils are significantly higher than the contents in paddy soils.95.8%, 68.8%,10.4%and 95.8%of vegetable samples exceeded the Maximum Levels of Contaminants in Foods(GB2762-2005)for As,Cd,Ni and Pb concentrations,respectively.There are significantly positive correlations between the concentrations of Cd,Pb and Zn in vegetables and the concentrations in the corresponding vegetable soils(p〈0.01).It is very necessary to focus on the potential risk of heavy metals for food safety and human health in agricultural soils and vegetables in the midstream and downstream of the Xiangjiang River,Hunan Province of China.展开更多
A total of 118 of agricultural soil and 43 of vegetable samples were collected from Dongguan City, Guangdong, China. The spatial distribution, sources, accumulation characteristics and potential risk of heavy metals i...A total of 118 of agricultural soil and 43 of vegetable samples were collected from Dongguan City, Guangdong, China. The spatial distribution, sources, accumulation characteristics and potential risk of heavy metals in the agricultural soils and vegetables were depicted in details by three different approaches, including total contents of eight metal elements in soils and vegetables, GIS maps and multivariate analysis of heavy metals in soils in the study. The results show that there are higher accumulation of heavy metals such as Cu, Zn, Ni, Pb, Cd and Hg in agricultural soils, and the contents of Pb (65.38 mg kg^-1) and Hg (0.24 mg kg^-1) are 1.82 and 2.82 times of the background contents of the corresponding heavy metals in soils of Guangdong Province, respectively. There are about 3.4% of Cu, 5.9% of Ni, 1.7% of Cd and 28% of Hg in all collected soil samples from all investigated sites which have overran the contents for heavy metals of the China Environmental Quality Standard for Soils (GB15618-1995, Grade Ⅱ). The pollution characteristics of multi-metals in soils are mainly reflected by Hg. There are different sources to eight metal elements in soils, Cu, Zn, Ni Cr and As are predominantly derived from parent materials, and Pb, Hg and Cd are affected by anthropogenic activities. The spatial distribution shows that the Cu, Zn, Ni, Cr, Pb, As and Hg contents of agricultural soils are high in the west and low in the east, and Cd contents are high in the northwest, southeast and low in the southwest in Dongguan. The ratios of vegetable samples which Ni, Pb and As concentrations higher than the Maximum Levels of Contaminants in Foods (GB2762-2005) are 4.7%, 16.3% and 48.8%, respectively. The order of bio-concentration factors (BCF) of heavy metals in vegetables is Cd 〉 Zn 〉 Cu 〉 As 〉 Ni 〉 Hg 〉 Cr 〉 Pb. It is necessary to focus on potential risk of heavy metals for food safety and human's health from agricultural soils and vegetables in Dongguan City, Guangdong Province.展开更多
Heavy metal pollution in agricultural soils has serious negative influence on human health. Concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni in top soils (0-20 cm) of greenhouses and farmlands from four main veg...Heavy metal pollution in agricultural soils has serious negative influence on human health. Concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni in top soils (0-20 cm) of greenhouses and farmlands from four main vegetable production areas Shouguang, Laiyang, Jinxiang, and Zhangqiu in Shandong Province, one of the most rapidly developing regions in China, were measured in this study. Shouguang is mainly occupied by greenhouse vegetables and the other three areas are mainly open field culture. Total of 149 soil samples were collected. The average concentrations of the eight heavy metals of the tested 149 soil samples were all below the threshold values according to "Farmland environmental quality evaluation standards for edible agricultural products (HJ332-2006)" of China. However, most of the studied heavy metals were present at higher concentrations than those of the natural background levels in local agricultural soils. Among the total 149 soil samples, 22 samples were contaminated by Cd, Ni, Cu, or Hg. Comparisons showed that the main pollution element in greenhouse vegetable soils was Cd, while that of open field vegetable soils was Cu. The results of principal components analysis (PCA) suggested that concentrations of Cr, As, and Ni were mainly controlled by parent rocks; Hg and Pb were affected by anthropogenic activities such as vehicle and industrial fumes and waste water irrigation. Meanwhile, concentrations of Cd, Cu, and Zn were affected mainly by the use of agrochemicals. Most of the heavy metals were positively correlated with each other in concentration. Appropriate measures should be taken to effectively control heavy metal levels in vegetable soils and thus protect human health.展开更多
Health implications of inhaling and/or ingesting dust particles with high concentrations of heavy metals from urban soils are a subject of intense concern. Understanding the geochemistry of these metals is key to thei...Health implications of inhaling and/or ingesting dust particles with high concentrations of heavy metals from urban soils are a subject of intense concern. Understanding the geochemistry of these metals is key to their effective management. Total concentrations of heavy metals,phosphorus (P) and 8 other elements from topsoil samples collected at 82 locations in Hangzhou City were measured to:a) assess their distribution in urban environments; and b) understand their differentiation as related to land use. Metal mobility was also studied using a three-step sequential chemical fractionation procedure. About 8.5%,1.2%,3.6%,11.0% and 30.3% of the soil samples had Cd,Cr,Cu,Pb,and Zn concentrations,respectively,above their allowable limits for public and private green areas and residential use. However,in commercial and industrial areas,most samples had metal concentrations below their allowable limits. Statistical analyses revealed that the 16 measured elements in urban soils could be divided into four groups based on natural or anthropic sources using a hierarchical cluster analysis. Additionally,Cu,Pb,and P showed similar spatial distributions with significant pollution in commercial zones,suggesting vehicle traffic or commercial activities as dominant pollutant sources. Also,Cd,Co,Cr,Ni,Zn,Mn and Fe had the highest concentrations in industrial locations,signifying that industrial activities were the main sources of these seven metals. Moreover,the data highlighted land-use as a major influence on heavy metal concentrations and forms found in topsoils with large proportions of soil Cd,Co,Cr,and Ni found in residual fractions and soil Cu,Pb and Zn mainly as extractable fractions.展开更多
Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in...Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in soil or crop and hair samples were used to assess their potential ecological risks,or to find the responses to these metals as evidences to prove the potential risk was coming down to observed harm,respectively.The results showed that,these metals in soil were ranked by severity of ecological risk as Hg>Cd>Pb>Cu>Cr>As>Zn,based on their single-element indexes.In the view of the potential ecological risk indexes,of all soil samples,about half had significantly high or high potential ecological risk,which covered more than 74%of the studied region.Most of the risks were 97.41%from Hg,Pb and Cd,especially,84.37%from Hg.Both the single-element and potential ecological risk indexes indicated that,the ecological risk grades had a special spatial characteristic,and increased from northwest to southeast generally.This was agreed with the spatial distribution of the strength in gold mining activities over the studied region.The concentrations of Hg and Pb were higher than their relative backgrounds in the corps,and were even 9.48 and 25.09 times higher than their relative backgrounds in residents'hair,respectively.All these showed that the heavy metals in the soil had a high potential ecological risk,especially,had been affecting these crops'growing and yield,and even the residents'health through food strains.Obviously,these metals'potential ecological harm had been coming down to observed harm to the ecology.展开更多
Heavy metal contamination of soils through anthropogenic activities is a widespread and serious problem confronting scientists and regulators throughout the world. In this study we investigated the distribution, chemi...Heavy metal contamination of soils through anthropogenic activities is a widespread and serious problem confronting scientists and regulators throughout the world. In this study we investigated the distribution, chemical species and availability of lead, zinc, cadmium and copper in nine surface(0 to 20 cm) soils from near an abandoned lead/zinc mine tailings located in Shaoxing, Zhejiang, China. Total heavy metal contents ranged from 5271 to 16369 mg/kg for Pb, 387 to 1221 mg/kg for Zn, 3.0 to 9.3 mg/kg for Cd and 65 to 206 mg/kg for Cu. In general, all heavy metals exceeded China National Standards for Soil Environmental Quality of Heavy Metals by a factor of 3-65 times. Comparison of the heavy metal concentrations(Pb, Zn, Cd and Cu) with clay content revealed a strongly significant relationship while significant relationship( P 〈 0.001 ) was also obtained between Cd + Zn and Pb + Cu. Solid phase speciation of the soils using Tessier procedure showed that the heavy metals were distributed in the order: residual 〉〉 organically complexed-Fe-Mn oxides occluded 〉 carbonate bound 〉 exchangeable 〉 water soluble. In the organic matter fraction, the ratio of Pb(29.1% ) to its total concentration in the soils was higher than those of Zn(4.70% ), Cd(3.16% ) and Cu(9.50% ). The percentages of the water soluble and the exchangeable fractions of Pb(1.80% ) and Cd(2.74% ) were markedly greater than those of Zn(0.10% ) and Cu(0.15% ), suggesting that Pb and Cd are relatively more mobile and hence more toxic in the contaminated soils. Strongly significant relationships between H20-Pb, H20-Zn and H20-Cu, strong positive correlations between H20-Pb, H20-Zn, H20-Cu and organic matter in soil were found. The content of H20-Pb, H20-Zn, H20-Cu was negatively correlated with pH values. The similar negative relationships between pH values and exchangeable heavy metals were also recorded. It is suggested that increasing soil pH or liming the soil could decrease bioavailability of heavy metals in the soil.展开更多
The monitored soil samples were collected from Heihui irrigated area, Jiaokou irrigated area, Qianhe river valley and Jinghe river valley (hereafter Heihui, Jiaokou, Qianhe and Jinghe for short respectively) of Guan...The monitored soil samples were collected from Heihui irrigated area, Jiaokou irrigated area, Qianhe river valley and Jinghe river valley (hereafter Heihui, Jiaokou, Qianhe and Jinghe for short respectively) of Guanzhong District. According to the Environment Quality Standard for Soil (GB 15618-1995II), we evaluated the pollution status of heavy metals (Cd, As, Cr and Pb) that could seriously endanger soil environment and human health by using single-factor index and synthetic pollution index methods. The results indicate that the synthetic pollution indices P of soil heavy metals are less than 0.7 in Heihui, Jiaokou, Qianhe and Jinghe of Guanzhong, the single-factor indices Pi of soil heavy metals of most soil samples are less than 0.7, so the soil environmental quality is in a good condition in Guanzhong on the whole; the enrichment degree of soil heavy metals is in the order of Heihui, Jinghe, Qianhe and Jiaokou; the contaminated degree of soil heavy metals has the feature of Cd 〉 As 〉 Cr 〉 Pb; heavy metals contents in the cultivated horizon soil are generally higher than those in its underlayer soil, heavy metals contents of soil have the characteristic of enriching towards the cultivated horizon; Cd exceeds standard in the soil samples HS07a, b and HS08a, b at the Yangtao orchard in Heihui and in the soil sample QHS01a at the suburban vegetable plot in Qianhe, which was mainly caused by the long-term irrational use of chemical fertilizer and pesticide.展开更多
Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil ...Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources.Phytoremediation,being more cost-effective and fewer side effects than physical and chemical approaches,has gained increasing popularity in both academic and practical circles.More than 400 plant species have been identified to have potential for soil and water remediation.Among them,Thlaspi,Brassica,Sedum alfredii H.,and Arabidopsis species have been mostly studied.It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come.This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.展开更多
Four assessment methods (two pollution indexes and two fuzzy mathematical models) were employed to investigate the environmental quality of four soils around a ferroalloy plant in Nanjing City. Environmental quality...Four assessment methods (two pollution indexes and two fuzzy mathematical models) were employed to investigate the environmental quality of four soils around a ferroalloy plant in Nanjing City. Environmental quality was assessed as class Ⅳ (moderately polluted) for each soil with single-factor index method, and was identified to be classes Ⅳ, Ⅲ (slightly polluted), Ⅲ, and Ⅲ for soils A, B, C, and D, respectively, with the comprehensive index model. In comparison with the single-factor index method, the comprehensive index model concerned both dominant parameter and average contribution of all factors to the integrated environmental quality. Using the two fuzzy mathematical methods (single-factor deciding and weighted average models), the environmental risks were determined to be classes Ⅳ, Ⅲ, Ⅱ (clean), and Ⅱ for soils A, B, C, and D, respectively. However, divergence of the membership degree to each pollution class still occurred between the two methods. In fuzzy mathematical methods, membership functions were used to describe the limits between different pollution degrees, and different weights were allocated for the factors according to pollution contribution. Introduction of membership degree and weight of each factor to fuzzy mathematical models made the methods more reasonable in the field of environmental risk assessment.展开更多
Fuzzy classification combined with spatial prediction was used to assess the state of soil pollution in the peri-urban Beijing area. Total concentrations of As, Cr, Cd, Hg, and Pb were determined in 220 topsoil sampl...Fuzzy classification combined with spatial prediction was used to assess the state of soil pollution in the peri-urban Beijing area. Total concentrations of As, Cr, Cd, Hg, and Pb were determined in 220 topsoil samples (0-20 cm) collected using a grid design in a study area of 2 600 kin2. Heavy metal concentrations were grouped into three classes according to the optimum number of classes and fuzziness exponent using the fuzzy comean (FCM) algorithm. Membership values were interpolated using ordinary kriging. The polluted soils of the study area induced by the measured heavy metals were concentrated in the northwest corner and eastern part, especially the southeastern part close to the urban zone, whereas the soils free of pollution were mainly distributed in the southwestern part. The soils with potential risk of heavy metal pollution were located in isolated spots mainly in the northern part and southeastern corner of the study region. The FCM algorithm combined with geostatistical techniques, as compared to conventional single geostatistical kriging methods, could produce a prediction with a quantitative uncertainty evaluation and higher reliability. Successful prediction of soil pollution achieved with FCM algorithm in this study indicated that fuzzy set theory had great potential for use in other areas of soil science.展开更多
Soil samples were collected with distance at 5, 20, 40, 80, 160, and 320 m from the Shen-Ha (Shenyang-Harbin) Highway, Northeast China, to investigate the effect of heavy metals of highway origin on soil nematode gu...Soil samples were collected with distance at 5, 20, 40, 80, 160, and 320 m from the Shen-Ha (Shenyang-Harbin) Highway, Northeast China, to investigate the effect of heavy metals of highway origin on soil nematode guilds. The contents of soil Pb, Cu, Zn, and the nematode community structure were analyzed. The results showed that the contents of total and available Pb, Ca, Zn varied significantly with the different distances from the highway. Pb was the main pollutant in the soils in the vicinity of Shen-Ha Highway. The zone from 20 to 40 m away from the highway was the most polluted area. The highest abundance of soil nematodes was found at 5 m while the lowest at 20 m away from the highway. Thirty six genera of nematodes belonging to 23 families were identified. Nematode guilds having different responses to soil heavy metals were classified into four types. Soil nematode guilds may act as a prominent indicator to heavy metal pollution of highway origin.展开更多
Heavy metal pollution is a widespread phenomenon in many countries of the world. In this study, we conducted a field investigation to assess the status of heavy metal pollution in urban soils of Dushanzi, a district o...Heavy metal pollution is a widespread phenomenon in many countries of the world. In this study, we conducted a field investigation to assess the status of heavy metal pollution in urban soils of Dushanzi, a district of Karamay city in Xinjiang, China. A total of 56 soil samples in the topsoil layer of 0-15 cm were collected within the urban area and seven elements (Cu, Zn, Cd, Pb, Cr, As and Ni) were analyzed. The mean concentrations of these metals were all higher than their corresponding background values of soils in Xinjiang. We used the pollution index and ecological risk index to assess the degree of heavy metal pollution and the potential ecological risk of urban soils. The pollution index values of Cu, Zn, Cd, Pb, Cr, As and Ni were 1.81, 1.35, 4.64, 1.27, 1.80, 1.39 and 1.22, respectively; and the potential ecological risk index values for them were 12.03, 1.79, 185.05, 8.39, 4.78, 18.44 and 1.79, respectively. These results indicated that urban soils in Dushanzi were polluted by heavy metals to some extent and demonstrated a high ecological risk, as influenced by industrial activities. Cd was the key element for the metal pollution of urban soils in the study area. Correlation analyses, principal component analysis coupled with the spatial distribution maps of element concentrations further soils can be mainly attributed to petrochemical commercial activities. revealed that heavy metal pollution of urban ndustry, coal chemical industry, traffic and展开更多
Phytoremediation technology is a newly-developed way of soil heavy metal pollution repair with high efficiency and good ecological comprehensive benefit. This paper briefly introduces the soil heavy metal pollution st...Phytoremediation technology is a newly-developed way of soil heavy metal pollution repair with high efficiency and good ecological comprehensive benefit. This paper briefly introduces the soil heavy metal pollution status at home and abroad,and focuses on the analysis of harm,sources and current situation of soil heavy metal pollution at home and abroad as well as mechanism and application of phytoremediation.Finally it discusses the key problems in phytoremediation technology that need to resolve in the future.展开更多
文摘5 different forests of Pinus massoniana, Schima superba, Liquidambar formosana, P. massoniana × S. superba, P. massoniana × L. formosana as the research object were set up to study the Cr, Cu and Zn content of degraded red soil region in subtropics. The soil heavy metal pollution degree was evaluated by national environmental quality standard (II class). The results showed that three soil metals of P. massoniana × S. superba were the highest, and the soil metals enrichment ability was strong. The order of single factor pollution index of metal elements was Cu (1.38) > Cr (0.81) > Zn (0.42), and moderately pollution, pollution warning and no pollution, respectively. There was no significant correlation between three soil heavy metals and soil total carbon (TC), total nitrogen (TN) and total phosphorus (TP). These results suggested that the accumulation of heavy metal elements was not derived from the parent material of soil. There was a significant positive correlation between the three metal elements which indicated that the sources of the three elements were similar. The structural equation model showed that the direct and indirect effects among the influencing factors ultimately affected the activity of heavy metals by cascade effects.
文摘The burial of waste in developing countries, which is often carried out without respect for environmental standards, constitutes a risk of contamination of soils and even groundwater given the toxic elements they contain. The objective of this work is to carry out a study of the retention of heavy metals through the contribution of cattle manure to soil samples from the final Agoè Nyivé landfill in Lomé, Togo. Soil samples from the final landfill were taken from the surface and depth at several locations to form a composite sample. The amendment of the composite sample was carried out with bovine manure on the mock-up in the Laboratory for six months. The determination of the total contents of heavy metals by the atomic absorption spectrophotometer (SAA) on the composite sample showed high contents exceeding the thresholds recommended by the AFNOR NF U 44-041 standard. Sequential extraction on these composite samples showed that the mobile portions of lead, cadmium, copper and zinc are respectively estimated at 78.06%, 50%, 28.89% and 91.59%. The bovine manure used to amend the landfill samples presents physicochemical parameters that can contribute to rendering heavy metals immobile in the soil matrix under natural conditions. The addition of manure initially made it possible to increase the values of pH, electrical conductivity, cation exchange capacity and organic matter, which promote the retention of heavy metals. Secondly, the addition of manure made it possible to reduce the mobile portion of the heavy metals studied;from 78.06% to 14.39% for lead, from 50% to 11.52% for cadmium, from 28.89% to almost 0% for copper and from 91.15% to 80.58% for zinc. The use of cattle manure as an amendment on the composite sample was decisive in reducing the mobility of heavy metals in the polluted soils of the final landfill.
基金funded by the Natural Science Foundation of Hunan Province,grant number“2021JJ30679”the Hunan Provincial Department of Education General Project,grant number“19C1744”。
文摘Exploring transport patterns of soil contaminants is essential for solving the problem of heavy metal contamination in mine soils.In this study,contamination of Pb,Zn,and Cd in the mountain soils of the lead–zinc ore mines in Ganxi Township,Hengdong County,Hunan Province,China was investigated,and their transport patterns were further explored using a soil-column model and numerical simulation techniques.In total,111 mine soil samples were collected and placed into six experimental soil columns.By controlling the water flow,a control soil column group(CK),two mixed soil columns X1 with daily water flows of 1 and 5 L,and three mixed soil columns X3 with daily water flows of 2,3,and 4 L were evaluated.The results showed that the residual fraction of Pb accounted for 71.93%of the content on average,whereas the exchangeable fractions of Zn,Cd,and Fe-Mn oxide-bound fractions of Zn and Cd accounted for 28.60%,31.07%,and 43.2%and 53.54%of the content,respectively.Pb,Zn,and Cd in the soils of the CK,X1,and X3 groups mainly were accumulated at a depth from approximately 0 to 20 cm,and the content at this depth accounted for 60.09%of that at a 0~40 cm depth.The soil at a depth range of 0~10 cm was most seriously contaminated,and the proportion of content was 32.39%of that at a 0~40 cm depth.Numerical simulation showed that on the 5 th day,the pollutant transport range was 0~24 cm,and on the 9 th day,the pollutant transport range exceeded 40 cm.On the 15 th day,the transport capacity of pollutants at depths of 0~40 cm was close to the stable state,but the soil at a depth of 0~10 cm was still heavily polluted.These results reflect the transport pattern of heavy metal pollutants in the soil of lead–zinc ore mines and may provide a reliable scientific support for the prevention of heavy metal contamination in mine environments.
文摘Because of human activities, urban dustfall and soil in China have been polluted by heavy metals in different degrees. However, the type and pollution degree of heavy metal hazard are different among cities. Based on data about the heavy metal pollution of urban soil and dustfall as well as related information inves- tigated, the present situation of heavy metal pollution in soil and dustfall in 23 regions of China were summarized, and some suggestions were put forward accord- ing to the existing problems of research on heavy metal pollution, aiming to provide reference for government decision-making and related research in future.
基金jointly supported by the project of China Geological Survey (DD20211574)Guangdong Geological Exploration and Urban Geology Project (2023–25)Public Welfare Geological Survey Project of Shaanxi Geological Survey Institute (202201)。
文摘In recent years, the problem of environmental pollution caused by microplastics has attracted widespread attention. This paper reviews the latest research progress in terms of the source, content and distribution characteristics, harm, and detection technology of soil microplastics by referring to the relevant literature on soil microplastics worldwide. It concludes that:(1) Existing studies worldwide have detected the presence of microplastics in soil, water, and atmosphere, and the use of agricultural films, sewage sludge,and other man-made activities are the main sources of microplastics in soil;(2) microplastics can adsorb heavy metals, persistent organic pollutants and antibiotics in soil, change the physical and chemical properties of soil. This will result in composite pollution and harm to the ecosystem;(3) microplastics in soil not only can destroy the activity of key soil microorganisms, but also enter the body of crops and soil animals, affecting normal growth of crops and soil animals, and further threaten human health;(4) at present, there is no unified operating standard for the sampling, processing, and detection process of microplastics. Analysis methods such as visual inspection, spectroscopy, and thermal analysis have both advantages and disadvantages, and emerging detection technologies require urgent development.Microplastics have become a new pollutant in soil and their distribution characteristics are closely related to human activities. They pollute the environment and threaten human health through the food chain.Although related research on soil microplastics has just begun, it will become the focus of research in the future.
基金financially supported by the National Natural Science Foundation of China (51504066).
文摘In a single sample plot,the total amount of heavy metals in the soil could not necessarily reflect the contents of their effective states.This must be considered when attempting to determine the degree of soil heavy-metal pollution in an area.In the present study,the soil around the molybdenum mining area in Huludao,China,was surveyed and sampled to evaluate soil heavy-metal pollution using the Nemerow multifactor pollution index method.The Tessier continuous extraction method was used to analyze the distribution of heavy-metal forms'and their content changes in the soil of this area.Thus,the bioactivity of heavy metals in the soil,the absorption of heavy metals by plants,and the distribution of heavy metals in plants were explored to provide data supporting the use of phytoremediation technology to treat the heavy-metal pollution in the molybdenum mining area and develop ecological restoration strategies for the area's wastelands.The pollution index results indicate that heavy-metal pollution in the soil around the tailings pond is severe,mainly due to Pb and Zn heavy metals.Heavy-metal pollution in the surrounding land is mainly due to Cd and Zn.Content analysis of the heavy-metal forms/states in soils shows that exchangeable forms,which are most effective and toxic to plants,of the following metals are highest in the following areas:Cd,Cu,and Zn in the mountains around the stope;Zn,Mo,and Cu in the cultivated land around the dump;and Cd,Zn,and Mo in the cultivated land around the tailings pond.The pollution index analysis provides a basic overview of soil heavy-metal pollution across the entire mining area.However,content analysis of heavy-metal forms/states better reflects the relationship between the availability of heavy metals in the soil and the effectiveness of plants.Thus,the latter analysis can help ensure that phytoremediation strategies are adequately targeted,science-based,and effective.
文摘Heavy metals in agricultural soil pose human health risks through food consumption. In a novel study for Trinidad, concentration and pollution index levels of heavy metals were assessed from 18 agricultural farms using the X-Ray fluorescence technique, then to evaluate the Geo-accumulation and Nemerow’s Integrated Pollution indexes. Toxic elements Pb and As were present but soil quality due to anthropogenic input was found as unpolluted. Overall heavy metal pollution was classified at a precautionary level for 33% of farms, slightly polluted for 61% and moderately polluted for 6% of the farms assessed, thus, regular monitoring and mitigation measures are important for food safety and human health in Trinidad.
基金National Natural Science Foundation of China, No.20507022
文摘A total of 219 agricultural soil and 48 vegetable samples were collected from the midstream and downstream of the Xiangjiang River(the Hengyang-Changsha section)in Hunan Province.The accumulation characteristics,spatial distribution and potential risk of heavy metals in the agricultural soils and vegetables were depicted.There are higher accumulations of heavy metals such as As,Cd,Cu,Ni,Pb and Zn in agricultural soils,and the contents of Cd(2.44 mg kg^-1 ),Pb(65.00 mg kg^-1 )and Zn(144.13 mg kg^-1 )are 7.97,3.69 and 1.63 times the corresponding background contents in soils of Hunan Province,respectively. 13.2%of As,68.5%of Cd,2.7%of Cu,2.7%of Ni,8.7%of Pb and 15.1%of Zn in soil samples from the investigated sites exceeded the maximum allowable heavy metal contents in the China Environmental Quality Standard for Soils(GB15618-1995,Grade Ⅱ).The pollution characteristics of multi-metals in soils are mainly due to Cd.The contents of As,Cd,Cu,Pb and Zn in vegetable soils are significantly higher than the contents in paddy soils.95.8%, 68.8%,10.4%and 95.8%of vegetable samples exceeded the Maximum Levels of Contaminants in Foods(GB2762-2005)for As,Cd,Ni and Pb concentrations,respectively.There are significantly positive correlations between the concentrations of Cd,Pb and Zn in vegetables and the concentrations in the corresponding vegetable soils(p〈0.01).It is very necessary to focus on the potential risk of heavy metals for food safety and human health in agricultural soils and vegetables in the midstream and downstream of the Xiangjiang River,Hunan Province of China.
基金Important National Science & Technology Specific Projects of China, No.2007zx07211Fund from the Ministry of Environmental Protection of the People’s Republic of China, No.0202043
文摘A total of 118 of agricultural soil and 43 of vegetable samples were collected from Dongguan City, Guangdong, China. The spatial distribution, sources, accumulation characteristics and potential risk of heavy metals in the agricultural soils and vegetables were depicted in details by three different approaches, including total contents of eight metal elements in soils and vegetables, GIS maps and multivariate analysis of heavy metals in soils in the study. The results show that there are higher accumulation of heavy metals such as Cu, Zn, Ni, Pb, Cd and Hg in agricultural soils, and the contents of Pb (65.38 mg kg^-1) and Hg (0.24 mg kg^-1) are 1.82 and 2.82 times of the background contents of the corresponding heavy metals in soils of Guangdong Province, respectively. There are about 3.4% of Cu, 5.9% of Ni, 1.7% of Cd and 28% of Hg in all collected soil samples from all investigated sites which have overran the contents for heavy metals of the China Environmental Quality Standard for Soils (GB15618-1995, Grade Ⅱ). The pollution characteristics of multi-metals in soils are mainly reflected by Hg. There are different sources to eight metal elements in soils, Cu, Zn, Ni Cr and As are predominantly derived from parent materials, and Pb, Hg and Cd are affected by anthropogenic activities. The spatial distribution shows that the Cu, Zn, Ni, Cr, Pb, As and Hg contents of agricultural soils are high in the west and low in the east, and Cd contents are high in the northwest, southeast and low in the southwest in Dongguan. The ratios of vegetable samples which Ni, Pb and As concentrations higher than the Maximum Levels of Contaminants in Foods (GB2762-2005) are 4.7%, 16.3% and 48.8%, respectively. The order of bio-concentration factors (BCF) of heavy metals in vegetables is Cd 〉 Zn 〉 Cu 〉 As 〉 Ni 〉 Hg 〉 Cr 〉 Pb. It is necessary to focus on potential risk of heavy metals for food safety and human's health from agricultural soils and vegetables in Dongguan City, Guangdong Province.
基金supported by the National Key Tech-nology R&D Program of China (2006BAD17B07,2006BDA07A13-1-2) the Staring Fund for Doc-tors of Shandong Academy of Agricultural Sciences,China (2006YBS015)
文摘Heavy metal pollution in agricultural soils has serious negative influence on human health. Concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni in top soils (0-20 cm) of greenhouses and farmlands from four main vegetable production areas Shouguang, Laiyang, Jinxiang, and Zhangqiu in Shandong Province, one of the most rapidly developing regions in China, were measured in this study. Shouguang is mainly occupied by greenhouse vegetables and the other three areas are mainly open field culture. Total of 149 soil samples were collected. The average concentrations of the eight heavy metals of the tested 149 soil samples were all below the threshold values according to "Farmland environmental quality evaluation standards for edible agricultural products (HJ332-2006)" of China. However, most of the studied heavy metals were present at higher concentrations than those of the natural background levels in local agricultural soils. Among the total 149 soil samples, 22 samples were contaminated by Cd, Ni, Cu, or Hg. Comparisons showed that the main pollution element in greenhouse vegetable soils was Cd, while that of open field vegetable soils was Cu. The results of principal components analysis (PCA) suggested that concentrations of Cr, As, and Ni were mainly controlled by parent rocks; Hg and Pb were affected by anthropogenic activities such as vehicle and industrial fumes and waste water irrigation. Meanwhile, concentrations of Cd, Cu, and Zn were affected mainly by the use of agrochemicals. Most of the heavy metals were positively correlated with each other in concentration. Appropriate measures should be taken to effectively control heavy metal levels in vegetable soils and thus protect human health.
基金Project supported by the Natural Science Foundation of Zhejiang Province, China (No. M403038).
文摘Health implications of inhaling and/or ingesting dust particles with high concentrations of heavy metals from urban soils are a subject of intense concern. Understanding the geochemistry of these metals is key to their effective management. Total concentrations of heavy metals,phosphorus (P) and 8 other elements from topsoil samples collected at 82 locations in Hangzhou City were measured to:a) assess their distribution in urban environments; and b) understand their differentiation as related to land use. Metal mobility was also studied using a three-step sequential chemical fractionation procedure. About 8.5%,1.2%,3.6%,11.0% and 30.3% of the soil samples had Cd,Cr,Cu,Pb,and Zn concentrations,respectively,above their allowable limits for public and private green areas and residential use. However,in commercial and industrial areas,most samples had metal concentrations below their allowable limits. Statistical analyses revealed that the 16 measured elements in urban soils could be divided into four groups based on natural or anthropic sources using a hierarchical cluster analysis. Additionally,Cu,Pb,and P showed similar spatial distributions with significant pollution in commercial zones,suggesting vehicle traffic or commercial activities as dominant pollutant sources. Also,Cd,Co,Cr,Ni,Zn,Mn and Fe had the highest concentrations in industrial locations,signifying that industrial activities were the main sources of these seven metals. Moreover,the data highlighted land-use as a major influence on heavy metal concentrations and forms found in topsoils with large proportions of soil Cd,Co,Cr,and Ni found in residual fractions and soil Cu,Pb and Zn mainly as extractable fractions.
基金Project(1212010741003)supported by the Ministry of Land and Resources of ChinaProject(SJ08-ZT08)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(NCET-07-0694)supported by Program for University Talents in the NewCentury,China
文摘Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in soil or crop and hair samples were used to assess their potential ecological risks,or to find the responses to these metals as evidences to prove the potential risk was coming down to observed harm,respectively.The results showed that,these metals in soil were ranked by severity of ecological risk as Hg>Cd>Pb>Cu>Cr>As>Zn,based on their single-element indexes.In the view of the potential ecological risk indexes,of all soil samples,about half had significantly high or high potential ecological risk,which covered more than 74%of the studied region.Most of the risks were 97.41%from Hg,Pb and Cd,especially,84.37%from Hg.Both the single-element and potential ecological risk indexes indicated that,the ecological risk grades had a special spatial characteristic,and increased from northwest to southeast generally.This was agreed with the spatial distribution of the strength in gold mining activities over the studied region.The concentrations of Hg and Pb were higher than their relative backgrounds in the corps,and were even 9.48 and 25.09 times higher than their relative backgrounds in residents'hair,respectively.All these showed that the heavy metals in the soil had a high potential ecological risk,especially,had been affecting these crops'growing and yield,and even the residents'health through food strains.Obviously,these metals'potential ecological harm had been coming down to observed harm to the ecology.
文摘Heavy metal contamination of soils through anthropogenic activities is a widespread and serious problem confronting scientists and regulators throughout the world. In this study we investigated the distribution, chemical species and availability of lead, zinc, cadmium and copper in nine surface(0 to 20 cm) soils from near an abandoned lead/zinc mine tailings located in Shaoxing, Zhejiang, China. Total heavy metal contents ranged from 5271 to 16369 mg/kg for Pb, 387 to 1221 mg/kg for Zn, 3.0 to 9.3 mg/kg for Cd and 65 to 206 mg/kg for Cu. In general, all heavy metals exceeded China National Standards for Soil Environmental Quality of Heavy Metals by a factor of 3-65 times. Comparison of the heavy metal concentrations(Pb, Zn, Cd and Cu) with clay content revealed a strongly significant relationship while significant relationship( P 〈 0.001 ) was also obtained between Cd + Zn and Pb + Cu. Solid phase speciation of the soils using Tessier procedure showed that the heavy metals were distributed in the order: residual 〉〉 organically complexed-Fe-Mn oxides occluded 〉 carbonate bound 〉 exchangeable 〉 water soluble. In the organic matter fraction, the ratio of Pb(29.1% ) to its total concentration in the soils was higher than those of Zn(4.70% ), Cd(3.16% ) and Cu(9.50% ). The percentages of the water soluble and the exchangeable fractions of Pb(1.80% ) and Cd(2.74% ) were markedly greater than those of Zn(0.10% ) and Cu(0.15% ), suggesting that Pb and Cd are relatively more mobile and hence more toxic in the contaminated soils. Strongly significant relationships between H20-Pb, H20-Zn and H20-Cu, strong positive correlations between H20-Pb, H20-Zn, H20-Cu and organic matter in soil were found. The content of H20-Pb, H20-Zn, H20-Cu was negatively correlated with pH values. The similar negative relationships between pH values and exchangeable heavy metals were also recorded. It is suggested that increasing soil pH or liming the soil could decrease bioavailability of heavy metals in the soil.
基金Key item of departmental plan of science and technology in Shaanxi Province, No.2003K12-G5 Soft science item of the Ministry of Science and Technology, No.2004DGS3D026 The opening fund of the State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, No.SKLLQG0515
文摘The monitored soil samples were collected from Heihui irrigated area, Jiaokou irrigated area, Qianhe river valley and Jinghe river valley (hereafter Heihui, Jiaokou, Qianhe and Jinghe for short respectively) of Guanzhong District. According to the Environment Quality Standard for Soil (GB 15618-1995II), we evaluated the pollution status of heavy metals (Cd, As, Cr and Pb) that could seriously endanger soil environment and human health by using single-factor index and synthetic pollution index methods. The results indicate that the synthetic pollution indices P of soil heavy metals are less than 0.7 in Heihui, Jiaokou, Qianhe and Jinghe of Guanzhong, the single-factor indices Pi of soil heavy metals of most soil samples are less than 0.7, so the soil environmental quality is in a good condition in Guanzhong on the whole; the enrichment degree of soil heavy metals is in the order of Heihui, Jinghe, Qianhe and Jiaokou; the contaminated degree of soil heavy metals has the feature of Cd 〉 As 〉 Cr 〉 Pb; heavy metals contents in the cultivated horizon soil are generally higher than those in its underlayer soil, heavy metals contents of soil have the characteristic of enriching towards the cultivated horizon; Cd exceeds standard in the soil samples HS07a, b and HS08a, b at the Yangtao orchard in Heihui and in the soil sample QHS01a at the suburban vegetable plot in Qianhe, which was mainly caused by the long-term irrational use of chemical fertilizer and pesticide.
基金Project supported by the Higher Education Commission,Government of Pakistan for the faculty training under the R & D Project"Strengthening Department of Soil Science and Soil and Water Conservation" at the University of Florida,USA,a grant from the St. Lucie River Water Initiative (SFWMD contract No. OT060162),USA,in partthe Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0536),China
文摘Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources.Phytoremediation,being more cost-effective and fewer side effects than physical and chemical approaches,has gained increasing popularity in both academic and practical circles.More than 400 plant species have been identified to have potential for soil and water remediation.Among them,Thlaspi,Brassica,Sedum alfredii H.,and Arabidopsis species have been mostly studied.It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come.This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.
基金the PhD Fund of the National Education Ministry of China (No20030284038)the Interna-tional Foundation for Science (NoW/4215)
文摘Four assessment methods (two pollution indexes and two fuzzy mathematical models) were employed to investigate the environmental quality of four soils around a ferroalloy plant in Nanjing City. Environmental quality was assessed as class Ⅳ (moderately polluted) for each soil with single-factor index method, and was identified to be classes Ⅳ, Ⅲ (slightly polluted), Ⅲ, and Ⅲ for soils A, B, C, and D, respectively, with the comprehensive index model. In comparison with the single-factor index method, the comprehensive index model concerned both dominant parameter and average contribution of all factors to the integrated environmental quality. Using the two fuzzy mathematical methods (single-factor deciding and weighted average models), the environmental risks were determined to be classes Ⅳ, Ⅲ, Ⅱ (clean), and Ⅱ for soils A, B, C, and D, respectively. However, divergence of the membership degree to each pollution class still occurred between the two methods. In fuzzy mathematical methods, membership functions were used to describe the limits between different pollution degrees, and different weights were allocated for the factors according to pollution contribution. Introduction of membership degree and weight of each factor to fuzzy mathematical models made the methods more reasonable in the field of environmental risk assessment.
基金Project supported by the National Natural Science Foundation of China (Nos. 40571065 and 40235054)the National Key Basic Research Support Foundation of China (No. G1999045707).
文摘Fuzzy classification combined with spatial prediction was used to assess the state of soil pollution in the peri-urban Beijing area. Total concentrations of As, Cr, Cd, Hg, and Pb were determined in 220 topsoil samples (0-20 cm) collected using a grid design in a study area of 2 600 kin2. Heavy metal concentrations were grouped into three classes according to the optimum number of classes and fuzziness exponent using the fuzzy comean (FCM) algorithm. Membership values were interpolated using ordinary kriging. The polluted soils of the study area induced by the measured heavy metals were concentrated in the northwest corner and eastern part, especially the southeastern part close to the urban zone, whereas the soils free of pollution were mainly distributed in the southwestern part. The soils with potential risk of heavy metal pollution were located in isolated spots mainly in the northern part and southeastern corner of the study region. The FCM algorithm combined with geostatistical techniques, as compared to conventional single geostatistical kriging methods, could produce a prediction with a quantitative uncertainty evaluation and higher reliability. Successful prediction of soil pollution achieved with FCM algorithm in this study indicated that fuzzy set theory had great potential for use in other areas of soil science.
基金supported by the National NaturalScience Foundation of China (No. 30600087)the Scientific Research Startup Special Foundation on Excellent Ph.D Thesis and Presidential Award of Chinese Academyof Sciences (No. 2007356).
文摘Soil samples were collected with distance at 5, 20, 40, 80, 160, and 320 m from the Shen-Ha (Shenyang-Harbin) Highway, Northeast China, to investigate the effect of heavy metals of highway origin on soil nematode guilds. The contents of soil Pb, Cu, Zn, and the nematode community structure were analyzed. The results showed that the contents of total and available Pb, Ca, Zn varied significantly with the different distances from the highway. Pb was the main pollutant in the soils in the vicinity of Shen-Ha Highway. The zone from 20 to 40 m away from the highway was the most polluted area. The highest abundance of soil nematodes was found at 5 m while the lowest at 20 m away from the highway. Thirty six genera of nematodes belonging to 23 families were identified. Nematode guilds having different responses to soil heavy metals were classified into four types. Soil nematode guilds may act as a prominent indicator to heavy metal pollution of highway origin.
基金funded by the National Natural Science Foundation of China(21267020,21467026)
文摘Heavy metal pollution is a widespread phenomenon in many countries of the world. In this study, we conducted a field investigation to assess the status of heavy metal pollution in urban soils of Dushanzi, a district of Karamay city in Xinjiang, China. A total of 56 soil samples in the topsoil layer of 0-15 cm were collected within the urban area and seven elements (Cu, Zn, Cd, Pb, Cr, As and Ni) were analyzed. The mean concentrations of these metals were all higher than their corresponding background values of soils in Xinjiang. We used the pollution index and ecological risk index to assess the degree of heavy metal pollution and the potential ecological risk of urban soils. The pollution index values of Cu, Zn, Cd, Pb, Cr, As and Ni were 1.81, 1.35, 4.64, 1.27, 1.80, 1.39 and 1.22, respectively; and the potential ecological risk index values for them were 12.03, 1.79, 185.05, 8.39, 4.78, 18.44 and 1.79, respectively. These results indicated that urban soils in Dushanzi were polluted by heavy metals to some extent and demonstrated a high ecological risk, as influenced by industrial activities. Cd was the key element for the metal pollution of urban soils in the study area. Correlation analyses, principal component analysis coupled with the spatial distribution maps of element concentrations further soils can be mainly attributed to petrochemical commercial activities. revealed that heavy metal pollution of urban ndustry, coal chemical industry, traffic and
基金Supported by Fundamental Research Funds for the GXAAS(2015JZ292015JZ302015YT32)
文摘Phytoremediation technology is a newly-developed way of soil heavy metal pollution repair with high efficiency and good ecological comprehensive benefit. This paper briefly introduces the soil heavy metal pollution status at home and abroad,and focuses on the analysis of harm,sources and current situation of soil heavy metal pollution at home and abroad as well as mechanism and application of phytoremediation.Finally it discusses the key problems in phytoremediation technology that need to resolve in the future.