Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing ...Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing traditional methods face several significant challenges,including low background suppression ability,low detection rates,and high false alarm rates when identifying infrared small targets in complex environments.This paper proposes a novel infrared small target detection method based on a transformed Gaussian filter kernel and clustering approach.The method provides improved background suppression and detection accuracy compared to traditional techniques while maintaining simplicity and lower computational costs.In the first step,the infrared image is filtered by a new filter kernel and the results of filtering are normalized.In the second step,an adaptive thresholding method is utilized to determine the pixels in small targets.In the final step,a fuzzy C-mean clustering algorithm is employed to group pixels in the same target,thus yielding the detection results.The results obtained from various real infrared image datasets demonstrate the superiority of the proposed method over traditional approaches.Compared with the traditional method of state of the arts detection method,the detection accuracy of the four sequences is increased by 2.06%,0.95%,1.03%,and 1.01%,respectively,and the false alarm rate is reduced,thus providing a more effective and robust solution.展开更多
The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase...The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small- scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.展开更多
Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightwe...Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightweight Ghost-YOLO(You Only Look Once)v8 algorithm.The algorithmintegrates advanced attention mechanisms and a smalltarget detection head to significantly enhance detection performance and efficiency.Firstly,an SE(Squeeze-and-Excitation)mechanism is incorporated into the backbone network to fortify the extraction of resilient features and precise target localization.This mechanism models feature channel dependencies,enabling adaptive adjustment of channel importance,thereby improving recognition of floating litter targets.Secondly,a 160×160 small-target detection layer is designed in the feature fusion neck to mitigate semantic information loss due to varying target scales.This design enhances the fusion of deep and shallow semantic information,improving small target feature representation and enabling better capture and identification of tiny floating litter.Thirdly,to balance performance and efficiency,the GhostConv module replaces part of the conventional convolutions in the feature fusion neck.Additionally,a novel C2fGhost(CSPDarknet53 to 2-Stage Feature Pyramid Networks Ghost)module is introduced to further reduce network parameters.Lastly,to address the challenge of occlusion,a newloss function,WIoU(Wise Intersection over Union)v3 incorporating a flexible and non-monotonic concentration approach,is adopted to improve detection rates for surface floating litter.The outcomes of the experiments demonstrate that the Ghost-YOLO v8 model proposed in this paper performs well in the dataset Marine,significantly enhances precision and recall by 3.3 and 7.6 percentage points,respectively,in contrast with the base model,mAP@0.5 and mAP 0.5:0.95 improve by 5.3 and 4.4 percentage points and reduces the computational volume by 1.88MB,the FPS value hardly decreases,and the efficient real-time identification of floating debris on the water’s surface can be achieved costeffectively.展开更多
To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight arc...To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing.展开更多
In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted...In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First,the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then,a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally,the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate,the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles(UAV).展开更多
In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an...In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an improved SAR image small target detection method based on YOLOv7 was proposed in this study.The proposed method improved the feature extraction network by using Switchable Around Convolution(SAConv)in the backbone network to help the model capture target information at different scales,thus improving the feature extraction ability for small targets.Based on the attention mechanism,the DyHead module was embedded in the target detection head to reduce the impact of complex background,and better focus on the small targets.In addition,the NWD loss function was introduced and combined with CIoU loss.Compared to the CIoU loss function typically used in YOLOv7,the NWD loss function pays more attention to the processing of small targets,so as to further improve the detection ability of small targets.The experimental results on the HRSID dataset indicate that the proposed method achieved mAP@0.5 and mAP@0.95 scores of 93.5%and 71.5%,respectively.Compared to the baseline model,this represents an increase of 7.2%and 7.6%,respectively.The proposed method can effectively complete the task of SAR image small target detection.展开更多
This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing...This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing technology. The parameters of the algorithm are also given. Experiments have been conducted, the results show that the algorithm has advantages of high detection probability, simple structure, and excellent real-time performance.展开更多
In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on tempo...In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on temporal profiles is presented that addresses the temporal characteristics of the target and background pixels to eliminate the large variation of background temporal profiles. Firstly, the temporal behaviors of different types of image pixels of practical infrared scenes are analyzed.Then, the new local and global variance filter is proposed. The baseline of the fluctuation level of background temporal profiles is obtained by using the local and global variance filter. The height of the target pulse signal is extracted by subtracting the baseline from the original temporal profiles. Finally, a new target detection criterion is designed. The proposed method is applied to detect dim and small targets in practical infrared sequence images. The experimental results show that the proposed algorithm has good detection performance for dim moving small targets in the complex background.展开更多
This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the g...This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.展开更多
An effective method of multiple input multiple output (MIMO) radar weak target detection is proposed based on the Hough transform. The detection time duration is divided into multiple coherent processing intervals ...An effective method of multiple input multiple output (MIMO) radar weak target detection is proposed based on the Hough transform. The detection time duration is divided into multiple coherent processing intervals (CPIs). Within each CPI, conventional methods such as fast Fourier transform (FFT) is exploit to coherent inte- grating in same range cell. Furthermore, noncoherent integration through several range cells can be implemented by Hough transform among all CPIs. Thus, higher integration gain can be obtained. Simulation results are also given to demonstrate that the detection performance of weak moving target can be dramatically improved.展开更多
This paper proposes a real-time detection method to improve the Infrared small target detection CenterNet(ISTD-CenterNet)network for detecting small infrared targets in complex environments.The method eliminates the n...This paper proposes a real-time detection method to improve the Infrared small target detection CenterNet(ISTD-CenterNet)network for detecting small infrared targets in complex environments.The method eliminates the need for an anchor frame,addressing the issues of low accuracy and slow speed.HRNet is used as the framework for feature extraction,and an ECBAM attention module is added to each stage branch for intelligent identification of the positions of small targets and significant objects.A scale enhancement module is also added to obtain a high-level semantic representation and fine-resolution prediction map for the entire infrared image.Besides,an improved sensory field enhancement module is designed to leverage semantic information in low-resolution feature maps,and a convolutional attention mechanism module is used to increase network stability and convergence speed.Comparison experiments conducted on the infrared small target data set ESIRST.The experiments show that compared to the benchmark network CenterNet-HRNet,the proposed ISTD-CenterNet improves the recall by 22.85%and the detection accuracy by 13.36%.Compared to the state-of-the-art YOLOv5small,the ISTD-CenterNet recall is improved by 5.88%,the detection precision is improved by 2.33%,and the detection frame rate is 48.94 frames/sec,which realizes the accurate real-time detection of small infrared targets.展开更多
For Printed Circuit Board(PCB)surface defect detection,traditional detection methods mostly focus on template matching-based reference method and manual detections,which have the disadvantages of low defect detection ...For Printed Circuit Board(PCB)surface defect detection,traditional detection methods mostly focus on template matching-based reference method and manual detections,which have the disadvantages of low defect detection efficiency,large errors in defect identification and localization,and low versatility of detectionmethods.In order to furthermeet the requirements of high detection accuracy,real-time and interactivity required by the PCB industry in actual production life.In the current work,we improve the Youonly-look-once(YOLOv4)defect detection method to train and detect six types of PCB small target defects.Firstly,the original Cross Stage Partial Darknet53(CSPDarknet53)backbone network is preserved for PCB defect feature information extraction,and secondly,the original multi-layer cascade fusion method is changed to a single-layer feature layer structure to greatly avoid the problem of uneven distribution of priori anchor boxes size in PCB defect detection process.Then,the K-means++clustering method is used to accurately cluster the anchor boxes to obtain the required size requirements for the defect detection,which further improves the recognition and localization of small PCB defects.Finally,the improved YOLOv4 defect detection model is compared and analyzed on PCB dataset with multi-class algorithms.The experimental results show that the average detection accuracy value of the improved defect detection model reaches 99.34%,which has better detection capability,lower leakage rate and false detection rate for PCB defects in comparison with similar defect detection algorithms.展开更多
In this paper,a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed.Firstly,the Cameron decomposition is exploited to fuse the radar ...In this paper,a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed.Firstly,the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level.Due to the artificial material structure on the surface of the target,it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell.Then,based on the analysis of the decomposition results,a new feature with scattering geometry characteristics in polarization domain,denoted as Cameron polarization decomposition scattering weight(CPD-SW),is extracted as the test statistic,which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types.Finally,the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset,which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection.展开更多
Autonomous driving technology has entered a period of rapid development,and traffic sign detection is one of the important tasks.Existing target detection networks are difficult to adapt to scenarios where target size...Autonomous driving technology has entered a period of rapid development,and traffic sign detection is one of the important tasks.Existing target detection networks are difficult to adapt to scenarios where target sizes are seriously imbalanced,and traffic sign targets are small and have unclear features,which makes detection more difficult.Therefore,we propose aHybrid Feature Fusion Traffic Sign detection algorithmbased onYOLOv7(HFFTYOLO).First,a self-attention mechanism is incorporated at the end of the backbone network to calculate feature interactions within scales;Secondly,the cross-scale fusion part of the neck introduces a bottom-up multi-path fusion method.Design reuse paths at the end of the neck,paying particular attention to cross-scale fusion of highlevel features.In addition,we found the appropriate channel width through a lot of experiments and reduced the superfluous parameters.In terms of training,a newregression lossCMPDIoUis proposed,which not only considers the problem of loss degradation when the aspect ratio is the same but the width and height are different,but also enables the penalty term to dynamically change at different scales.Finally,our proposed improved method shows excellent results on the TT100K dataset.Compared with the baseline model,without increasing the number of parameters and computational complexity,AP0.5 and AP increased by 2.2%and 2.7%,respectively,reaching 92.9%and 58.1%.展开更多
Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology.Aerial threats,such as“low,slow,and small(LSS)”moving targets,po...Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology.Aerial threats,such as“low,slow,and small(LSS)”moving targets,pose increasing challenges to society.The core goal of this work is to address the issues,such as small tracking error correction and aiming control,of electro-optical detection systems by using mechatronics drive modeling,composite velocity–image stability control,and improved interpolation filter design.A tracking controller delay prediction method for moving targets is proposed based on the Euler transformation model of a two-axis,two-gimbal cantilever beam coaxial configuration.Small tracking error formation is analyzed in detail to reveal the scientific mechanism of composite control between the tracking controller’s feedback and the motor’s velocity–stability loop.An improved segmental interpolation filtering algorithm is established by combining line of sight(LOS)position correction and multivariable typical tracking fault diagnosis.Then,a platform with 2 degrees of freedom is used to test the system.An LSS moving target shooting object with a tracking distance of S=100 m,target board area of A=1 m^(2),and target linear velocity of v=5 m/s is simulated.Results show that the optimal method’s distribution probability of the tracking error in a circle with a radius of 1 mrad is 66.7%,and that of the traditional method is 41.6%.Compared with the LOS shooting accuracy of the traditional method,the LOS shooting accuracy of the optimized method is improved by 37.6%.展开更多
Small infrared target detection has widespread applications in various fields including military,aviation,and medicine.However,detecting small infrared targets in complex backgrounds remains challenging.To detect smal...Small infrared target detection has widespread applications in various fields including military,aviation,and medicine.However,detecting small infrared targets in complex backgrounds remains challenging.To detect small infrared targets,we propose a variable-structure U-shaped network referred as CAFUNet.A central differential convolution-based encoder,ASPP,an Attention Fusion module,and a decoder module are the critical components of the CAFUNet.The encoder module based on central difference convolution effectively extracts shallow detail information from infrared images,complemented by rich contextual information obtained from the deep features in the decoder module.However,the direct fusion of the shallow detail features with semantic features may lead to feature mismatch.To address this,we incorporate an Attention Fusion(AF)module to enhance the network performance further.We performed ablation studies on each module to evaluate its effectiveness.The results show that our proposed algorithm outperforms the state-of-the-art methods on publicly available datasets.展开更多
In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ...In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.展开更多
To satisfy practical requirements of high real-time accuracy and low computational complexity of synthetic aperture radar (SAR) image ship small target detection, this paper proposes a small ship target detection meth...To satisfy practical requirements of high real-time accuracy and low computational complexity of synthetic aperture radar (SAR) image ship small target detection, this paper proposes a small ship target detection method based on the improved You Only Look Once Version 3 (YOLOv3). The main contributions of this study are threefold. First, the feature extraction network of the original YOLOV3 algorithm is replaced with the VGG16 network convolution layer. Second, general convolution is transformed into depthwise separable convolution, thereby reducing the computational cost of the algorithm. Third, a residual network structure is introduced into the feature extraction network to reuse the shallow target feature information, which enhances the detailed features of the target and ensures the improvement in accuracy of small target detection performance. To evaluate the performance of the proposed method, many experiments are conducted on public SAR image datasets. For ship targets with complex backgrounds and small ship targets in the SAR image, the effectiveness of the proposed algorithm is verified. Results show that the accuracy and recall rate improved by 5.31% and 2.77%, respectively, compared with the original YOLOV3. Furthermore, the proposed model not only significantly reduces the computational effort, but also improves the detection accuracy of ship small target.展开更多
An image multi-scale edge detection method based on anti-symmetrical bi-orthogonal wavelet is given in theory. Convolution operation property and function as a differential operator are analyzed,which anti-symmetrical...An image multi-scale edge detection method based on anti-symmetrical bi-orthogonal wavelet is given in theory. Convolution operation property and function as a differential operator are analyzed,which anti-symmetrical bi-orthogonal wavelet transform have. An algorithm for wavelet reconstruction in which multi-scale edge can be detected is put forward. Based on it, a detection method for small target in infrared image with sea or sky background based on the anti-symmetrical bi-orthogonal wavelet and morphology is proposed. The small target detection is considered as a process in which structural background is removed, correlative background is suppressed, and noise is restrained. In this approach, the multi-scale edge is extracted by means of the anti-symmetrical bi-orthogonal wavelet decomposition. Then, module maximum chains formed by complicated background of clouds, sea wave and sea-sky-line are removed, and the image background becomes smoother. Finally, the morphology based edge detection method is used to get small target and restrain undulate background and noise. Experiment results show that the approach can suppress clutter background and detect the small target effectively.展开更多
According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extrac...According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance.展开更多
基金supported by the Funding of Jiangsu University of Science and Technology,under the grant number:1132921208.
文摘Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing traditional methods face several significant challenges,including low background suppression ability,low detection rates,and high false alarm rates when identifying infrared small targets in complex environments.This paper proposes a novel infrared small target detection method based on a transformed Gaussian filter kernel and clustering approach.The method provides improved background suppression and detection accuracy compared to traditional techniques while maintaining simplicity and lower computational costs.In the first step,the infrared image is filtered by a new filter kernel and the results of filtering are normalized.In the second step,an adaptive thresholding method is utilized to determine the pixels in small targets.In the final step,a fuzzy C-mean clustering algorithm is employed to group pixels in the same target,thus yielding the detection results.The results obtained from various real infrared image datasets demonstrate the superiority of the proposed method over traditional approaches.Compared with the traditional method of state of the arts detection method,the detection accuracy of the four sequences is increased by 2.06%,0.95%,1.03%,and 1.01%,respectively,and the false alarm rate is reduced,thus providing a more effective and robust solution.
基金Project supported by the National Natural Science Foundation of China(Grant No.61673066)
文摘The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small- scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.
基金Supported by the fund of the Henan Province Science and Technology Research Project(No.242102210213).
文摘Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightweight Ghost-YOLO(You Only Look Once)v8 algorithm.The algorithmintegrates advanced attention mechanisms and a smalltarget detection head to significantly enhance detection performance and efficiency.Firstly,an SE(Squeeze-and-Excitation)mechanism is incorporated into the backbone network to fortify the extraction of resilient features and precise target localization.This mechanism models feature channel dependencies,enabling adaptive adjustment of channel importance,thereby improving recognition of floating litter targets.Secondly,a 160×160 small-target detection layer is designed in the feature fusion neck to mitigate semantic information loss due to varying target scales.This design enhances the fusion of deep and shallow semantic information,improving small target feature representation and enabling better capture and identification of tiny floating litter.Thirdly,to balance performance and efficiency,the GhostConv module replaces part of the conventional convolutions in the feature fusion neck.Additionally,a novel C2fGhost(CSPDarknet53 to 2-Stage Feature Pyramid Networks Ghost)module is introduced to further reduce network parameters.Lastly,to address the challenge of occlusion,a newloss function,WIoU(Wise Intersection over Union)v3 incorporating a flexible and non-monotonic concentration approach,is adopted to improve detection rates for surface floating litter.The outcomes of the experiments demonstrate that the Ghost-YOLO v8 model proposed in this paper performs well in the dataset Marine,significantly enhances precision and recall by 3.3 and 7.6 percentage points,respectively,in contrast with the base model,mAP@0.5 and mAP 0.5:0.95 improve by 5.3 and 4.4 percentage points and reduces the computational volume by 1.88MB,the FPS value hardly decreases,and the efficient real-time identification of floating debris on the water’s surface can be achieved costeffectively.
基金funded by the General Project of Key Research and Develop-ment Plan of Shaanxi Province(No.2022NY-087).
文摘To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing.
基金supported by the National Natural Science Foundation of China (No.U1833203),the National Natural Science Foundation of China (No.62301036)the Aviation Science Foundation (No.2020Z019055001)China Postdoctoral Science Foundation Funded Project (No.2022M720446)。
文摘In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First,the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then,a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally,the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate,the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles(UAV).
文摘In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an improved SAR image small target detection method based on YOLOv7 was proposed in this study.The proposed method improved the feature extraction network by using Switchable Around Convolution(SAConv)in the backbone network to help the model capture target information at different scales,thus improving the feature extraction ability for small targets.Based on the attention mechanism,the DyHead module was embedded in the target detection head to reduce the impact of complex background,and better focus on the small targets.In addition,the NWD loss function was introduced and combined with CIoU loss.Compared to the CIoU loss function typically used in YOLOv7,the NWD loss function pays more attention to the processing of small targets,so as to further improve the detection ability of small targets.The experimental results on the HRSID dataset indicate that the proposed method achieved mAP@0.5 and mAP@0.95 scores of 93.5%and 71.5%,respectively.Compared to the baseline model,this represents an increase of 7.2%and 7.6%,respectively.The proposed method can effectively complete the task of SAR image small target detection.
文摘This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing technology. The parameters of the algorithm are also given. Experiments have been conducted, the results show that the algorithm has advantages of high detection probability, simple structure, and excellent real-time performance.
基金National Natural Science Foundation of China(61774120)
文摘In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on temporal profiles is presented that addresses the temporal characteristics of the target and background pixels to eliminate the large variation of background temporal profiles. Firstly, the temporal behaviors of different types of image pixels of practical infrared scenes are analyzed.Then, the new local and global variance filter is proposed. The baseline of the fluctuation level of background temporal profiles is obtained by using the local and global variance filter. The height of the target pulse signal is extracted by subtracting the baseline from the original temporal profiles. Finally, a new target detection criterion is designed. The proposed method is applied to detect dim and small targets in practical infrared sequence images. The experimental results show that the proposed algorithm has good detection performance for dim moving small targets in the complex background.
基金supported by the National Natural Science Foundation of China (61171194)
文摘This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.
文摘An effective method of multiple input multiple output (MIMO) radar weak target detection is proposed based on the Hough transform. The detection time duration is divided into multiple coherent processing intervals (CPIs). Within each CPI, conventional methods such as fast Fourier transform (FFT) is exploit to coherent inte- grating in same range cell. Furthermore, noncoherent integration through several range cells can be implemented by Hough transform among all CPIs. Thus, higher integration gain can be obtained. Simulation results are also given to demonstrate that the detection performance of weak moving target can be dramatically improved.
基金funded by National Natural Science Foundation of China,Fund Number 61703424.
文摘This paper proposes a real-time detection method to improve the Infrared small target detection CenterNet(ISTD-CenterNet)network for detecting small infrared targets in complex environments.The method eliminates the need for an anchor frame,addressing the issues of low accuracy and slow speed.HRNet is used as the framework for feature extraction,and an ECBAM attention module is added to each stage branch for intelligent identification of the positions of small targets and significant objects.A scale enhancement module is also added to obtain a high-level semantic representation and fine-resolution prediction map for the entire infrared image.Besides,an improved sensory field enhancement module is designed to leverage semantic information in low-resolution feature maps,and a convolutional attention mechanism module is used to increase network stability and convergence speed.Comparison experiments conducted on the infrared small target data set ESIRST.The experiments show that compared to the benchmark network CenterNet-HRNet,the proposed ISTD-CenterNet improves the recall by 22.85%and the detection accuracy by 13.36%.Compared to the state-of-the-art YOLOv5small,the ISTD-CenterNet recall is improved by 5.88%,the detection precision is improved by 2.33%,and the detection frame rate is 48.94 frames/sec,which realizes the accurate real-time detection of small infrared targets.
基金This work was funded by the Natural Science Research Project of Higher Education Institutions in Jiangsu Province(No.20KJA520007)Min Zhang receives the grant and the URLs to sponsors’websites are http://jyt.jiangsu.gov.cn/.
文摘For Printed Circuit Board(PCB)surface defect detection,traditional detection methods mostly focus on template matching-based reference method and manual detections,which have the disadvantages of low defect detection efficiency,large errors in defect identification and localization,and low versatility of detectionmethods.In order to furthermeet the requirements of high detection accuracy,real-time and interactivity required by the PCB industry in actual production life.In the current work,we improve the Youonly-look-once(YOLOv4)defect detection method to train and detect six types of PCB small target defects.Firstly,the original Cross Stage Partial Darknet53(CSPDarknet53)backbone network is preserved for PCB defect feature information extraction,and secondly,the original multi-layer cascade fusion method is changed to a single-layer feature layer structure to greatly avoid the problem of uneven distribution of priori anchor boxes size in PCB defect detection process.Then,the K-means++clustering method is used to accurately cluster the anchor boxes to obtain the required size requirements for the defect detection,which further improves the recognition and localization of small PCB defects.Finally,the improved YOLOv4 defect detection model is compared and analyzed on PCB dataset with multi-class algorithms.The experimental results show that the average detection accuracy value of the improved defect detection model reaches 99.34%,which has better detection capability,lower leakage rate and false detection rate for PCB defects in comparison with similar defect detection algorithms.
基金supported by the National Natural Science Foundation of China(62201251)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB510024)the Open Fund for the Hangzhou Institute of Technology Academician Workstation at Xidian University(XH-KY-202306-0291)。
文摘In this paper,a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed.Firstly,the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level.Due to the artificial material structure on the surface of the target,it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell.Then,based on the analysis of the decomposition results,a new feature with scattering geometry characteristics in polarization domain,denoted as Cameron polarization decomposition scattering weight(CPD-SW),is extracted as the test statistic,which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types.Finally,the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset,which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection.
基金funded by National Natural Science Foundation of China(Grant No.U2004163).
文摘Autonomous driving technology has entered a period of rapid development,and traffic sign detection is one of the important tasks.Existing target detection networks are difficult to adapt to scenarios where target sizes are seriously imbalanced,and traffic sign targets are small and have unclear features,which makes detection more difficult.Therefore,we propose aHybrid Feature Fusion Traffic Sign detection algorithmbased onYOLOv7(HFFTYOLO).First,a self-attention mechanism is incorporated at the end of the backbone network to calculate feature interactions within scales;Secondly,the cross-scale fusion part of the neck introduces a bottom-up multi-path fusion method.Design reuse paths at the end of the neck,paying particular attention to cross-scale fusion of highlevel features.In addition,we found the appropriate channel width through a lot of experiments and reduced the superfluous parameters.In terms of training,a newregression lossCMPDIoUis proposed,which not only considers the problem of loss degradation when the aspect ratio is the same but the width and height are different,but also enables the penalty term to dynamically change at different scales.Finally,our proposed improved method shows excellent results on the TT100K dataset.Compared with the baseline model,without increasing the number of parameters and computational complexity,AP0.5 and AP increased by 2.2%and 2.7%,respectively,reaching 92.9%and 58.1%.
基金funded by the National Natural Science Foundation of China(Grant No.U19A2072)the Provincial Department of Education Postgraduate Scientific Research Innovation Project of Hunan Province of China(Grant No.QL20210007)the Ministerial Level Postgraduate Funding Project of China(Grant No.JY2021A007).
文摘Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology.Aerial threats,such as“low,slow,and small(LSS)”moving targets,pose increasing challenges to society.The core goal of this work is to address the issues,such as small tracking error correction and aiming control,of electro-optical detection systems by using mechatronics drive modeling,composite velocity–image stability control,and improved interpolation filter design.A tracking controller delay prediction method for moving targets is proposed based on the Euler transformation model of a two-axis,two-gimbal cantilever beam coaxial configuration.Small tracking error formation is analyzed in detail to reveal the scientific mechanism of composite control between the tracking controller’s feedback and the motor’s velocity–stability loop.An improved segmental interpolation filtering algorithm is established by combining line of sight(LOS)position correction and multivariable typical tracking fault diagnosis.Then,a platform with 2 degrees of freedom is used to test the system.An LSS moving target shooting object with a tracking distance of S=100 m,target board area of A=1 m^(2),and target linear velocity of v=5 m/s is simulated.Results show that the optimal method’s distribution probability of the tracking error in a circle with a radius of 1 mrad is 66.7%,and that of the traditional method is 41.6%.Compared with the LOS shooting accuracy of the traditional method,the LOS shooting accuracy of the optimized method is improved by 37.6%.
文摘Small infrared target detection has widespread applications in various fields including military,aviation,and medicine.However,detecting small infrared targets in complex backgrounds remains challenging.To detect small infrared targets,we propose a variable-structure U-shaped network referred as CAFUNet.A central differential convolution-based encoder,ASPP,an Attention Fusion module,and a decoder module are the critical components of the CAFUNet.The encoder module based on central difference convolution effectively extracts shallow detail information from infrared images,complemented by rich contextual information obtained from the deep features in the decoder module.However,the direct fusion of the shallow detail features with semantic features may lead to feature mismatch.To address this,we incorporate an Attention Fusion(AF)module to enhance the network performance further.We performed ablation studies on each module to evaluate its effectiveness.The results show that our proposed algorithm outperforms the state-of-the-art methods on publicly available datasets.
文摘In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.
文摘To satisfy practical requirements of high real-time accuracy and low computational complexity of synthetic aperture radar (SAR) image ship small target detection, this paper proposes a small ship target detection method based on the improved You Only Look Once Version 3 (YOLOv3). The main contributions of this study are threefold. First, the feature extraction network of the original YOLOV3 algorithm is replaced with the VGG16 network convolution layer. Second, general convolution is transformed into depthwise separable convolution, thereby reducing the computational cost of the algorithm. Third, a residual network structure is introduced into the feature extraction network to reuse the shallow target feature information, which enhances the detailed features of the target and ensures the improvement in accuracy of small target detection performance. To evaluate the performance of the proposed method, many experiments are conducted on public SAR image datasets. For ship targets with complex backgrounds and small ship targets in the SAR image, the effectiveness of the proposed algorithm is verified. Results show that the accuracy and recall rate improved by 5.31% and 2.77%, respectively, compared with the original YOLOV3. Furthermore, the proposed model not only significantly reduces the computational effort, but also improves the detection accuracy of ship small target.
基金Sponsored by China Postdoctoral Science Foundation (20060400400)
文摘An image multi-scale edge detection method based on anti-symmetrical bi-orthogonal wavelet is given in theory. Convolution operation property and function as a differential operator are analyzed,which anti-symmetrical bi-orthogonal wavelet transform have. An algorithm for wavelet reconstruction in which multi-scale edge can be detected is put forward. Based on it, a detection method for small target in infrared image with sea or sky background based on the anti-symmetrical bi-orthogonal wavelet and morphology is proposed. The small target detection is considered as a process in which structural background is removed, correlative background is suppressed, and noise is restrained. In this approach, the multi-scale edge is extracted by means of the anti-symmetrical bi-orthogonal wavelet decomposition. Then, module maximum chains formed by complicated background of clouds, sea wave and sea-sky-line are removed, and the image background becomes smoother. Finally, the morphology based edge detection method is used to get small target and restrain undulate background and noise. Experiment results show that the approach can suppress clutter background and detect the small target effectively.
基金supported by the National Key Research and Development Program of China(2016YFB0500901)the Natural Science Foundation of Shanghai(18ZR1437200)the Satellite Mapping Technology and Application National Key Laboratory of Geographical Information Bureau(KLSMTA-201709)
文摘According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance.