Wire ropes,employed extensively in coal mine hoists and transportation systems are subject to damage due to wear,corrosion and fatigue.The extent of damage and the carrying capacity of ropes are closely related to the...Wire ropes,employed extensively in coal mine hoists and transportation systems are subject to damage due to wear,corrosion and fatigue.The extent of damage and the carrying capacity of ropes are closely related to the sense of safety by staff and equipments.Magnetic flux leakage detection method(MFL),as an effective method,is these days widely used in detection of broken strands of wire ropes.In order to improve the accuracy of detection of flaws in wire ropes by magnetic flux leakage(MFL),the effect of the distance between a sensor and the surface of a wire rope(i.e.,lift-off) on detection by magnetic flux leakage was in-vestigated.An analysis of the main principles for the choice of lift-off is described by us and a new method that improves the structure of the detector is proposed from the point of view of the design of a magnetic circuit,to restrain the impact of fluctuations of sensor lift-off.The effect of this kind of method is validated by simulation and computation.The results show that the detection sensitivity is markedly increased by this method.Furthermore,the signal-to-noise ratio(SNR) can be increased by over 28%.This method will lend itself to offer reliable scientific information to optimize the structure of excitation devices and improve the accuracy of MFL detection.展开更多
A novel vibration isolation device called the nonlinear energy sink(NES)with NiTiNOL-steel wire ropes(NiTi-ST)is applied to a whole-spacecraft system.The NiTi-ST is used to describe the damping of the NES,which is cou...A novel vibration isolation device called the nonlinear energy sink(NES)with NiTiNOL-steel wire ropes(NiTi-ST)is applied to a whole-spacecraft system.The NiTi-ST is used to describe the damping of the NES,which is coupled with the modified Bouc-Wen model of hysteresis.The NES with NiTi-ST vibration reduction principle uses the irreversibility of targeted energy transfer(TET)to concentrate the energy locally on the nonlinear oscillator,and then dissipates it through damping in the NES with NiTi-ST.The generalized vibration transmissibility,obtained by the root mean square treatment of the harmonic response of the nonlinear output frequency response functions(NOFRFs),is first used as the evaluation index to analyze the whole-spacecraft system in the future.An optimization analysis of the impact of system responses is performed using different parameters of NES with NiTi-ST based on the transmissibility of NOFRFs.Finally,the effects of vibration suppression by varying the parameters of NiTi-ST are analyzed from the perspective of energy absorption.The results indicate that NES with NiTi-ST can reduce excessive vibration of the whole-spacecraft system,without changing its natural frequency.Moreover,the NES with NiTi-ST can be directly used in practical engineering applications.展开更多
The principles of X-ray Non-destructive testing (NDT) for steel wire ropes buried in conveyer belt is described in the paper. The mathematical model for calculating the effective cross section of wire ropes has been d...The principles of X-ray Non-destructive testing (NDT) for steel wire ropes buried in conveyer belt is described in the paper. The mathematical model for calculating the effective cross section of wire ropes has been developed. The test data on steel wire rope samples of various types are presented,which have been compared with the National Standard. And this calculation model for the effective cross section is very important to the prediction system for transverse failure of conveyer belt.展开更多
By analyzing the feature of the joint image of the conveyer belt with steel ropes, a quick judgement algorithm based on the gradient search for the joint ’s elongation is put forward. And at the same time its experim...By analyzing the feature of the joint image of the conveyer belt with steel ropes, a quick judgement algorithm based on the gradient search for the joint ’s elongation is put forward. And at the same time its experiment result is also given in this paper.展开更多
One kind of quenched Cr12 steel dies for impacting stainless steel wire rope (SSWR) was treated by low temperature liquid sulfurization catalyzed with rare earths, in order to extend their service life for assuring ...One kind of quenched Cr12 steel dies for impacting stainless steel wire rope (SSWR) was treated by low temperature liquid sulfurization catalyzed with rare earths, in order to extend their service life for assuring the continuity of production line, and simultaneously improve the surface quality of SSWR obtained. After immerged into the melting sulphur containing 4 % (mass fraction) of LaF3 and 1% of CeCl3 at 463 K for 4 h, the sulfurized dies were very smooth and black, with little distortion and hardness loss. They exhibited a certain extent of corrosion-resistance in air due to the coexisting rare earths in the sulfurized layer. Optical observations showed that the sulfurized layer was uniform and had scale-like structure. The trail of machined SSWR indicated that the production capacity of sulfurized dies had been doubled and the replacing period on line was postponed. SEM morphology also proved that the wear extent of cavities on sulfurized dies decreased greatly and the surface quality of SSWR obtained was improved markedly.展开更多
钢丝绳金属横截面积损失(Loss of Metallic area)直接影响钢丝绳承载强度等特性,因此其检测及定量分析对于设备安全可靠运行具有重要意义。针对目前主磁通检测中存在的线圈绕制困难、参数确定模糊等问题,基于仿真模型提出一种基于印制...钢丝绳金属横截面积损失(Loss of Metallic area)直接影响钢丝绳承载强度等特性,因此其检测及定量分析对于设备安全可靠运行具有重要意义。针对目前主磁通检测中存在的线圈绕制困难、参数确定模糊等问题,基于仿真模型提出一种基于印制电路板(Printed Circuit Board)的分体式线圈结构,分析了线圈匝数、线圈层数、线距等参数对检测信号的影响;建立主磁通检测模型,探究损伤宽度对主磁通检测信号的影响规律,并针对损伤宽度变化造成的信号损失设计补偿方法;最后通过钢丝实验验证金属横截面积定量检测效果,表明该方法定量误差在1%以内,能够有效检测钢丝绳的LMA。展开更多
文摘Wire ropes,employed extensively in coal mine hoists and transportation systems are subject to damage due to wear,corrosion and fatigue.The extent of damage and the carrying capacity of ropes are closely related to the sense of safety by staff and equipments.Magnetic flux leakage detection method(MFL),as an effective method,is these days widely used in detection of broken strands of wire ropes.In order to improve the accuracy of detection of flaws in wire ropes by magnetic flux leakage(MFL),the effect of the distance between a sensor and the surface of a wire rope(i.e.,lift-off) on detection by magnetic flux leakage was in-vestigated.An analysis of the main principles for the choice of lift-off is described by us and a new method that improves the structure of the detector is proposed from the point of view of the design of a magnetic circuit,to restrain the impact of fluctuations of sensor lift-off.The effect of this kind of method is validated by simulation and computation.The results show that the detection sensitivity is markedly increased by this method.Furthermore,the signal-to-noise ratio(SNR) can be increased by over 28%.This method will lend itself to offer reliable scientific information to optimize the structure of excitation devices and improve the accuracy of MFL detection.
基金Project supported by the National Natural Science Foundation of China(No.11772205)the Scientific Research Fund of Liaoning Provincial Education Department(No.L201703)+1 种基金the Liaoning Revitalization Talent Program(No.XLYC1807172)the Training Project of Liaoning Higher Education Institutions in Domestic and Overseas(No.2018LNGXGJWPY-YB008)
文摘A novel vibration isolation device called the nonlinear energy sink(NES)with NiTiNOL-steel wire ropes(NiTi-ST)is applied to a whole-spacecraft system.The NiTi-ST is used to describe the damping of the NES,which is coupled with the modified Bouc-Wen model of hysteresis.The NES with NiTi-ST vibration reduction principle uses the irreversibility of targeted energy transfer(TET)to concentrate the energy locally on the nonlinear oscillator,and then dissipates it through damping in the NES with NiTi-ST.The generalized vibration transmissibility,obtained by the root mean square treatment of the harmonic response of the nonlinear output frequency response functions(NOFRFs),is first used as the evaluation index to analyze the whole-spacecraft system in the future.An optimization analysis of the impact of system responses is performed using different parameters of NES with NiTi-ST based on the transmissibility of NOFRFs.Finally,the effects of vibration suppression by varying the parameters of NiTi-ST are analyzed from the perspective of energy absorption.The results indicate that NES with NiTi-ST can reduce excessive vibration of the whole-spacecraft system,without changing its natural frequency.Moreover,the NES with NiTi-ST can be directly used in practical engineering applications.
文摘The principles of X-ray Non-destructive testing (NDT) for steel wire ropes buried in conveyer belt is described in the paper. The mathematical model for calculating the effective cross section of wire ropes has been developed. The test data on steel wire rope samples of various types are presented,which have been compared with the National Standard. And this calculation model for the effective cross section is very important to the prediction system for transverse failure of conveyer belt.
文摘By analyzing the feature of the joint image of the conveyer belt with steel ropes, a quick judgement algorithm based on the gradient search for the joint ’s elongation is put forward. And at the same time its experiment result is also given in this paper.
基金Project supported by the Natural Science Fund of Jiangsu Province (BK2002062)Startup Fund of Hohai University(2084/40501107)
文摘One kind of quenched Cr12 steel dies for impacting stainless steel wire rope (SSWR) was treated by low temperature liquid sulfurization catalyzed with rare earths, in order to extend their service life for assuring the continuity of production line, and simultaneously improve the surface quality of SSWR obtained. After immerged into the melting sulphur containing 4 % (mass fraction) of LaF3 and 1% of CeCl3 at 463 K for 4 h, the sulfurized dies were very smooth and black, with little distortion and hardness loss. They exhibited a certain extent of corrosion-resistance in air due to the coexisting rare earths in the sulfurized layer. Optical observations showed that the sulfurized layer was uniform and had scale-like structure. The trail of machined SSWR indicated that the production capacity of sulfurized dies had been doubled and the replacing period on line was postponed. SEM morphology also proved that the wear extent of cavities on sulfurized dies decreased greatly and the surface quality of SSWR obtained was improved markedly.