Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition...Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.展开更多
Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analy...Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analysis is its capability of decomposing electrochemical noise records into different sets of wavelet coefficients, which contain information about the time scale characteristic of the associated corrosion event. In this context, the potential noise fluctuations during the free corrosion of pure aluminum in sodium chloride solution was recorded and analyzed with wavelet transform technique. The typical results showed that the EN signal is composed of distinct type of events, which can be classified according to their scales, i.e. their time constants. Meanwhile, the energy distribution plot (EDP) can be used as 'fingerprints' of EN signals and can be very useful for analyzing EN data in the future.展开更多
After briefly introducing the characteristics of 1/f noise in millimeter wave focalplane array detectors, the paper analyses the relation of wavelet transform and 1/f noise in detail, suggests the fashion of decorrela...After briefly introducing the characteristics of 1/f noise in millimeter wave focalplane array detectors, the paper analyses the relation of wavelet transform and 1/f noise in detail, suggests the fashion of decorrelating 1/f noise using the wavelet transform and deduces the relative expressions. The results of computer simulation show good effectiveness.展开更多
Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possi...Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband.展开更多
This letter investigates the wavelet transform, as well as the principle and the method of the noise reduction based on wavelet transform, it chooses the threshold noise reduction, and discusses in detail the principl...This letter investigates the wavelet transform, as well as the principle and the method of the noise reduction based on wavelet transform, it chooses the threshold noise reduction, and discusses in detail the principles, features and design steps of the threshold method. Rigrsure, heursure, sqtwolog and minimization four kinds of threshold selection method are compared qualitatively, and quantitatively. The wavelet analysis toolbox of MATLAB helps to realize the computer simulation of the signal noise reduction. The graphics and calculated standard deviation of the various threshold noise reductions show that, when dealing with the actual pressure signal of the oil pipeline leakage, sqtwolog threshold selection method can effectively remove the noise. Aiming to the pressure signal of the oil pipeline leakage, the best choice is the wavelet threshold noise reduction with sqtwolog threshold. The leakage point is close to the actual position, with the relative error of less than 1%.展开更多
Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significa...Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significant. Considering the shortcomings of fast Fourier transform method (FFT) in analysis of muzzle impulse noise frequency characteristics, wavelet energy spectrum method is put forward. Based on specific experiment data, the frequency characteristics and spectral energy dis tribution can be obtained. The experiment results show that wavelet energy spectrum method is applicable in muzzle impulse noise characteristic analysis.展开更多
With the widespread application and fast development of gas and oil pipeline network in China, the pipeline inspection technology has been used more extensively. The magnetic flux leakage (MFL) method has establishe...With the widespread application and fast development of gas and oil pipeline network in China, the pipeline inspection technology has been used more extensively. The magnetic flux leakage (MFL) method has established itself as the most widely used in-line inspection technique for the evaluation of gas and oil pipelines. The MFL data obtained from seamless pipeline inspection is usually contaminated by the seamless pipe noise (SPN). SPN can in some cases completely mask MFL signals from certain type of defects, and therefore considerably reduces the detectability of the defect signals. In this paper, a new de-noising algorithm called wavelet domain adaptive filtering is proposed for removing the SPN contained in the MFL data. The new algorithm results from combining the wavelet transform with the adaptive filtering technique. Results from application of the proposed algorithm to the MFL data from field tests show that the proposed algorithm has good performance and considerably improves the detectability of the defect signals in the MFL data.展开更多
The arrival times of first teleseismic phases are difficult to be measured precisely because of slowly and gradually changed onsets and weak amplitudes. The arrival times measured manually are usually behind the real ...The arrival times of first teleseismic phases are difficult to be measured precisely because of slowly and gradually changed onsets and weak amplitudes. The arrival times measured manually are usually behind the real ones. In this paper, using the ratio method of fixed scale wavelet transformations improved by us, the arrival times for the first arrival phases (such as P and PKIKP) at the teleseismic and far-teleseismic distances were measured. The results are reasonable and reliable based on the analysis and discussion of the reliabilities and errors.展开更多
Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discriminati...Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discrimination factor of wavelet decomposition, we analyze the variation rule of normal background and noise data from Shandong digital deformation observation data. The research results indicate that: a) 1/4 daily wave, semi-diurnal tide wave, daily wave and half lunar wave and so on quasi-periodic signal exist in the detail decomposing signal of wavelet when scale are equal to 2, 3 and 4; b) The amplitude of detail decomposing signal is the biggest when scale is equal to 3; c) The detail decomposing signal contains mainly noise corresponding to scale 1 and 5, respectively; d) We may trace the abnormal precursory which is related to earthquake by analyzing non-earthquake wavelet decomposing signal whose scale is specified from digital deformation observation data.展开更多
A method of single channel speech enhancement is proposed by de-noising using stationary wavelet transform. The approach developed herein processes multi-resolution wavelet coefficients individually and then recovery ...A method of single channel speech enhancement is proposed by de-noising using stationary wavelet transform. The approach developed herein processes multi-resolution wavelet coefficients individually and then recovery signal is reconstructed. The time invariant characteristics of stationary wavelet transform is particularly useful in speech de-noising. Experimental results show that the proposed speech enhancement by de-noising algorithm is possible to achieve an excellent balance between suppresses noise effectively and preserves as many target characteristics of original signal as possible. This de-noising algorithm offers a superior performance to speech signal noise suppress.展开更多
This paper considers the problem of noise cancellation for the magnetic flux leakage (MFL) data obtained from the inspection of oil pipelines. MFL data is contaminated by various sources of noise, and the noise can co...This paper considers the problem of noise cancellation for the magnetic flux leakage (MFL) data obtained from the inspection of oil pipelines. MFL data is contaminated by various sources of noise, and the noise can considerably reduce the detectability of flaw signals in MFL data. This paper presents a new de-noising approach for removing the system noise contained in the MFL data by using the coefficients de-noising with wavelet transform. Experimental results are presented to demonstrate the advantages of this de-noising approach over the conventional wavelet de-noising method.展开更多
Sound waves propagate well underwater making it useful for target locating and communication.Underwater acoustic noise(UWAN)affects the reliability in applications where the noise comes from multiple sources.In this p...Sound waves propagate well underwater making it useful for target locating and communication.Underwater acoustic noise(UWAN)affects the reliability in applications where the noise comes from multiple sources.In this paper,a novel signal de-noising technique is proposed using S-transform.From the time-frequency representation,de-noising is performed using soft thresholding with universal threshold estimation which is then reconstructed.The UWAN used for the validation is sea truth data collected at Desaru beach on the eastern shore of Johor in Malaysia with the use of broadband hydrophones.The comparison is made with the more conventionally used wavelet transform de-noising method.Two types of signals are evaluated:fixed frequency signals and time-varying signals.The results demonstrate that the proposed method shows better signal to noise ratio(SNR)by 4 dB and lower root mean square error(RMSE)by 3 dB achieved at the Nyquist sampling frequency compared to the previously proposed de-noising method like wavelet transform.展开更多
It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent...It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.展开更多
In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most pr...In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most promising new approaches for extracting noise hidden information from noisy time series . Because of singularity strength is hard to calculate accurately, a wavelet transform modulus maxima method was used to get singularity spectrum. The singularity spectrum of white noise and aluminium interconnection electromigration noise was calculated and analyzed. The experimental results show that the new algorithm is more accurate than tradition estimating algorithm. The proposed method is feasible and efficient.展开更多
Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in...Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.展开更多
Based on wavelet transform theory,a method for signal de-noising and singularity detection and elimination is proposed,which can reduce the noises and express local singularity.Each singularity can also be detected an...Based on wavelet transform theory,a method for signal de-noising and singularity detection and elimination is proposed,which can reduce the noises and express local singularity.Each singularity can also be detected and located through the local modulus maxima of wavelet transform.Simulation experiments are conducted with MATLAB software.The experimental results demonstrate that the method proposed in this paper is effective and feasible.展开更多
Wavelet transforms(WT) are proposed as an alternative tool to overcome the limitations of fast Fourier transforms(FFT) in the analysis of electrochemical noise(EN) data. The most relevant feature of this method of ana...Wavelet transforms(WT) are proposed as an alternative tool to overcome the limitations of fast Fourier transforms(FFT) in the analysis of electrochemical noise(EN) data. The most relevant feature of this method of analysis is its capability of decomposing electrochemical noise records into different sets of wavelet coefficients(distinct type of events), which contains information about the time scale characteristic of the associated corrosion event. In this context, the potential noise fluctuations during the free corrosion of commercial aluminum alloy LY12 in sodium chloride solution was recorded and analyzed with wavelet transform technique. The typical results show that the EN signal is composed of distinct type of events, which can be classified according to their scales, i.e. their time constants. Meanwhile, the energy distribution plot(EDP) can be used as "fingerprints" of EN signals and can be very useful for analyzing EN data in the future.展开更多
This paper introduces a new method to separate PD1 from other disturbing signals present on the high voltage genera-tors and motors. The method is based on combination of a pattern classifier, the Discrete Wavelet Tra...This paper introduces a new method to separate PD1 from other disturbing signals present on the high voltage genera-tors and motors. The method is based on combination of a pattern classifier, the Discrete Wavelet Transform (DWT), to de-noise PD and Time-Of-Arrival method to separate PD sources. Furthermore, it will be shown that it can recognize PD sources including rotating machine’s internal and external discharge pulses (e.g. on the bus bar).展开更多
文摘Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.
基金the financial support of the National Key Basic Research Foundation of China (Project G19990650), the National Natural Science Foundation of China (Project 50071054) and the financial support of State Key
文摘Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analysis is its capability of decomposing electrochemical noise records into different sets of wavelet coefficients, which contain information about the time scale characteristic of the associated corrosion event. In this context, the potential noise fluctuations during the free corrosion of pure aluminum in sodium chloride solution was recorded and analyzed with wavelet transform technique. The typical results showed that the EN signal is composed of distinct type of events, which can be classified according to their scales, i.e. their time constants. Meanwhile, the energy distribution plot (EDP) can be used as 'fingerprints' of EN signals and can be very useful for analyzing EN data in the future.
文摘After briefly introducing the characteristics of 1/f noise in millimeter wave focalplane array detectors, the paper analyses the relation of wavelet transform and 1/f noise in detail, suggests the fashion of decorrelating 1/f noise using the wavelet transform and deduces the relative expressions. The results of computer simulation show good effectiveness.
文摘Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband.
文摘This letter investigates the wavelet transform, as well as the principle and the method of the noise reduction based on wavelet transform, it chooses the threshold noise reduction, and discusses in detail the principles, features and design steps of the threshold method. Rigrsure, heursure, sqtwolog and minimization four kinds of threshold selection method are compared qualitatively, and quantitatively. The wavelet analysis toolbox of MATLAB helps to realize the computer simulation of the signal noise reduction. The graphics and calculated standard deviation of the various threshold noise reductions show that, when dealing with the actual pressure signal of the oil pipeline leakage, sqtwolog threshold selection method can effectively remove the noise. Aiming to the pressure signal of the oil pipeline leakage, the best choice is the wavelet threshold noise reduction with sqtwolog threshold. The leakage point is close to the actual position, with the relative error of less than 1%.
文摘Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significant. Considering the shortcomings of fast Fourier transform method (FFT) in analysis of muzzle impulse noise frequency characteristics, wavelet energy spectrum method is put forward. Based on specific experiment data, the frequency characteristics and spectral energy dis tribution can be obtained. The experiment results show that wavelet energy spectrum method is applicable in muzzle impulse noise characteristic analysis.
文摘With the widespread application and fast development of gas and oil pipeline network in China, the pipeline inspection technology has been used more extensively. The magnetic flux leakage (MFL) method has established itself as the most widely used in-line inspection technique for the evaluation of gas and oil pipelines. The MFL data obtained from seamless pipeline inspection is usually contaminated by the seamless pipe noise (SPN). SPN can in some cases completely mask MFL signals from certain type of defects, and therefore considerably reduces the detectability of the defect signals. In this paper, a new de-noising algorithm called wavelet domain adaptive filtering is proposed for removing the SPN contained in the MFL data. The new algorithm results from combining the wavelet transform with the adaptive filtering technique. Results from application of the proposed algorithm to the MFL data from field tests show that the proposed algorithm has good performance and considerably improves the detectability of the defect signals in the MFL data.
基金National Natural Science Foundation of China (40074007).
文摘The arrival times of first teleseismic phases are difficult to be measured precisely because of slowly and gradually changed onsets and weak amplitudes. The arrival times measured manually are usually behind the real ones. In this paper, using the ratio method of fixed scale wavelet transformations improved by us, the arrival times for the first arrival phases (such as P and PKIKP) at the teleseismic and far-teleseismic distances were measured. The results are reasonable and reliable based on the analysis and discussion of the reliabilities and errors.
基金Natural Science Foundation of Shandong Province (Y2000E08) the bargain item of China Earthquake Administration in the year 2002.
文摘Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discrimination factor of wavelet decomposition, we analyze the variation rule of normal background and noise data from Shandong digital deformation observation data. The research results indicate that: a) 1/4 daily wave, semi-diurnal tide wave, daily wave and half lunar wave and so on quasi-periodic signal exist in the detail decomposing signal of wavelet when scale are equal to 2, 3 and 4; b) The amplitude of detail decomposing signal is the biggest when scale is equal to 3; c) The detail decomposing signal contains mainly noise corresponding to scale 1 and 5, respectively; d) We may trace the abnormal precursory which is related to earthquake by analyzing non-earthquake wavelet decomposing signal whose scale is specified from digital deformation observation data.
基金Supported by the Education Foundation of Anhui Province (No.2002kj003)
文摘A method of single channel speech enhancement is proposed by de-noising using stationary wavelet transform. The approach developed herein processes multi-resolution wavelet coefficients individually and then recovery signal is reconstructed. The time invariant characteristics of stationary wavelet transform is particularly useful in speech de-noising. Experimental results show that the proposed speech enhancement by de-noising algorithm is possible to achieve an excellent balance between suppresses noise effectively and preserves as many target characteristics of original signal as possible. This de-noising algorithm offers a superior performance to speech signal noise suppress.
文摘This paper considers the problem of noise cancellation for the magnetic flux leakage (MFL) data obtained from the inspection of oil pipelines. MFL data is contaminated by various sources of noise, and the noise can considerably reduce the detectability of flaw signals in MFL data. This paper presents a new de-noising approach for removing the system noise contained in the MFL data by using the coefficients de-noising with wavelet transform. Experimental results are presented to demonstrate the advantages of this de-noising approach over the conventional wavelet de-noising method.
基金The authors would like to thank the Universiti Teknologi Malaysia(UTM)and Ministry of Higher Education(MOHE)Malaysia for supporting this work.
文摘Sound waves propagate well underwater making it useful for target locating and communication.Underwater acoustic noise(UWAN)affects the reliability in applications where the noise comes from multiple sources.In this paper,a novel signal de-noising technique is proposed using S-transform.From the time-frequency representation,de-noising is performed using soft thresholding with universal threshold estimation which is then reconstructed.The UWAN used for the validation is sea truth data collected at Desaru beach on the eastern shore of Johor in Malaysia with the use of broadband hydrophones.The comparison is made with the more conventionally used wavelet transform de-noising method.Two types of signals are evaluated:fixed frequency signals and time-varying signals.The results demonstrate that the proposed method shows better signal to noise ratio(SNR)by 4 dB and lower root mean square error(RMSE)by 3 dB achieved at the Nyquist sampling frequency compared to the previously proposed de-noising method like wavelet transform.
基金This project is supported by National Natural Science Foundation of China (No.50275154) Municipal Natural Science Foundation of Chongqing, China (No.8773).
文摘It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.
基金Foundation item: National Natural Science Foundation of China(No.60372072)
文摘In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most promising new approaches for extracting noise hidden information from noisy time series . Because of singularity strength is hard to calculate accurately, a wavelet transform modulus maxima method was used to get singularity spectrum. The singularity spectrum of white noise and aluminium interconnection electromigration noise was calculated and analyzed. The experimental results show that the new algorithm is more accurate than tradition estimating algorithm. The proposed method is feasible and efficient.
文摘Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.
文摘Based on wavelet transform theory,a method for signal de-noising and singularity detection and elimination is proposed,which can reduce the noises and express local singularity.Each singularity can also be detected and located through the local modulus maxima of wavelet transform.Simulation experiments are conducted with MATLAB software.The experimental results demonstrate that the method proposed in this paper is effective and feasible.
文摘Wavelet transforms(WT) are proposed as an alternative tool to overcome the limitations of fast Fourier transforms(FFT) in the analysis of electrochemical noise(EN) data. The most relevant feature of this method of analysis is its capability of decomposing electrochemical noise records into different sets of wavelet coefficients(distinct type of events), which contains information about the time scale characteristic of the associated corrosion event. In this context, the potential noise fluctuations during the free corrosion of commercial aluminum alloy LY12 in sodium chloride solution was recorded and analyzed with wavelet transform technique. The typical results show that the EN signal is composed of distinct type of events, which can be classified according to their scales, i.e. their time constants. Meanwhile, the energy distribution plot(EDP) can be used as "fingerprints" of EN signals and can be very useful for analyzing EN data in the future.
文摘This paper introduces a new method to separate PD1 from other disturbing signals present on the high voltage genera-tors and motors. The method is based on combination of a pattern classifier, the Discrete Wavelet Transform (DWT), to de-noise PD and Time-Of-Arrival method to separate PD sources. Furthermore, it will be shown that it can recognize PD sources including rotating machine’s internal and external discharge pulses (e.g. on the bus bar).