Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has a...Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has also been recently demonstrated in both bulk materials and thin films.However,the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours,often reporting degradation of the detection performance.Here it is shown that self-powered direct X-ray detectors,fabricated starting from a FAPbBr_(3)submicrometer-thick film deposition onto a mesoporous TiO_(2)scaffold,can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss,demonstrating ultra-high operational stability and excellent repeatability.No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy,revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film.In addition,trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy^(−1)cm^(−3)at 0 V,an unprecedented value in the field of thin-film-based photoconductors and photodiodes for“hard”X-rays.Finally,prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced.展开更多
High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were ...High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.展开更多
Topmetal-M2 is a large-area pixel sensor chip fabricated using the GSMC 130 nm CMOS process in 2021.The pixel array of Topmetal-M2 consists of pixels of 400 rows×512 columns with a pixel pitch of 45μm×45μm...Topmetal-M2 is a large-area pixel sensor chip fabricated using the GSMC 130 nm CMOS process in 2021.The pixel array of Topmetal-M2 consists of pixels of 400 rows×512 columns with a pixel pitch of 45μm×45μm.The array is divided into 16 subarrays,with pixels of 400 rows×32 columns per subarray.Each pixel incorporates two charge sensors:a diode sensor and a Topmetal sensor.The in-pixel circuit primarily consists of a charge-sensitive amplifier for energy measurements,a discriminator with a peak-holding circuit,and a time-to-amplitude converter for time-of-arrival measurements.The pixel of Topmetal-M2 has a charge input range of~0-3 k e-,a voltage output range of~0-180 mV,and a charge-voltage conversion gain of~59.56μV∕e-.The average equivalent noise charge of Topmetal-M2,which includes the readout electronic system noise,is~43.45 e-.In the scanning mode,the time resolution of Topmetal-M2 is 1 LSB=1.25μs,and the precision is^()7.41μs.At an operating voltage of 1.5 V,Topmetal-M2 has a power consumption of~49 mW∕cm~2.In this article,we provide a comprehensive overview of the chip architecture,pixel working principles,and functional behavior of Topmetal-M2.Furthermore,we present the results of preliminary tests conducted on Topmetal-M2,namely,alpha-particle and soft X-ray tests.展开更多
As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and...As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.展开更多
In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and perfo...In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and performance evaluation.When the beam energy is low,the effect of multiple Coulomb scattering on the measured resolution of the Device Under Test(DUT)must be considered to accurately evaluate the performance of the pixel chips and detectors.This study aimed to investigate the effect of multiple Coulomb scattering on the measured resolution,particularly at low beam energies.Simulations were conducted using Allpix^(2) to study the effects of multiple Coulomb scattering under different beam energies,material budgets,and telescope layouts.The simulations also provided the minimum energy at which the effect of multiple Coulomb scattering could be ignored.Compared with the results of a five-layer detector system tested with an electron beam at DESY,the simulation results were consistent with the beam test results,confirming the reliability of the simulations.展开更多
Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting sin...Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security.展开更多
Detectors were developed for detecting irradiation in the short-wavelength ultraviolet(UVC)interval using high-quality single-crystallineα-Ga_(2)O_(3) films with Pt interdigital contacts.The films ofα-Ga_(2)O_(3) we...Detectors were developed for detecting irradiation in the short-wavelength ultraviolet(UVC)interval using high-quality single-crystallineα-Ga_(2)O_(3) films with Pt interdigital contacts.The films ofα-Ga_(2)O_(3) were grown on planar sapphire substrates with c-plane orientation using halide vapor phase epitaxy.The spectral dependencies of the photo to dark current ratio,responsivity,external quantum efficiency and detectivity of the structures were investigated in the wavelength interval of 200−370 nm.The maximum of photo to dark current ratio,responsivity,external quantum efficiency,and detectivity of the structures were 1.16×10^(4) arb.un.,30.6 A/W,1.65×10^(4)%,and 6.95×10^(15) Hz^(0.5)·cm/W at a wavelength of 230 nm and an applied voltage of 1 V.The high values of photoelectric properties were due to the internal enhancement of the photoresponse associated with strong hole trapping.Theα-Ga_(2)O_(3) film-based UVC detectors can function in self-powered operation mode due to the built-in electric field at the Pt/α-Ga_(2)O_(3) interfaces.At a wavelength of 254 nm and zero applied voltage,the structures exhibit a responsivity of 0.13 mA/W and an external quantum efficiency of 6.2×10^(−2)%.The UVC detectors based on theα-Ga_(2)O_(3) films demonstrate high-speed performance with a rise time of 18 ms in self-powered mode.展开更多
In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are of...In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.展开更多
Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a sel...Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV.展开更多
The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)mission is designed to monitor the Gamma-Ray Bursts(GRBs)associated with gravitational waves and other high-energy transient sources...The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)mission is designed to monitor the Gamma-Ray Bursts(GRBs)associated with gravitational waves and other high-energy transient sources.The mission consists of two microsatellites which are planned to operate at the opposite sides of the Earth.Each GECAM satellite could detect and localize GRBs in about 8 keV-5 MeV with its 25 Gamma-Ray Detectors(GRDs).In this work,we report the in-flight energy calibration of GRDs using the characteristic gamma-ray lines in the background spectra,and show their performance evolution during the commissioning phase.Besides,a preliminary cross-calibration of energy response with Fermi GBM data is also presented,validating the energy response of GRDs.展开更多
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable...Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.展开更多
Photon-counting computed tomography(PCCT)represents a significant advancement in pediatric cardiovascular imaging.Traditional CT systems employ energy-integrating detectors that convert X-ray photons into visible ligh...Photon-counting computed tomography(PCCT)represents a significant advancement in pediatric cardiovascular imaging.Traditional CT systems employ energy-integrating detectors that convert X-ray photons into visible light,whereas PCCT utilizes photon-counting detectors that directly transform X-ray photons into electric signals.This direct conversion allows photon-counting detectors to sort photons into discrete energy levels,thereby enhancing image quality through superior noise reduction,improved spatial and contrast resolution,and reduced artifacts.In pediatric applications,PCCT offers substantial benefits,including lower radiation doses,which may help reduce the risk of malignancy in pediatric patients,with perhaps greater potential to benefit those with repeated exposure from a young age.Enhanced spatial resolution facilitates better visualization of small structures,vital for diagnosing congenital heart defects.Additionally,PCCT’s spectral capabilities improve tissue characterization and enable the creation of virtual monoenergetic images,which enhance soft-tissue contrast and potentially reduce contrast media doses.Initial clinical results indicate that PCCT provides superior image quality and diagnostic accuracy compared to conven-tional CT,particularly in challenging pediatric cardiovascular cases.As PCCT technology matures,further research and standardized protocols will be essential to fully integrate it into pediatric imaging practices,ensuring optimized diagnostic outcomes and patient safety.展开更多
We investigate the contact characteristics of bi-layer thin films, Ti(20nm)/Al(200nm) on Si-doped n-type A10.6 Ga0.4 N films grown on sapphire substrate. The surface treatment was aqua regia boiling before metalli...We investigate the contact characteristics of bi-layer thin films, Ti(20nm)/Al(200nm) on Si-doped n-type A10.6 Ga0.4 N films grown on sapphire substrate. The surface treatment was aqua regia boiling before metallization and annealing after metallization at different conditions in N2 ambient. High resolution X-ray diffractometery analysis was carried out on the contacts and the surface interfaces of these conditions were compared. A specific contact resistivity pc was determined using the circular transmission line method via current-voltage measurements. A pc of 3.42 × 10^-4 Ω·cm^2 was achieved when annealed at 670℃ for 90s. Then, this ideal ohmic contact was used in back-illuminated solar-blind AlGaN p- i-n detectors and the detectors' performances, such as spectral responsivity, dark-current,and breakdown voltage were optimized.展开更多
After approximately half a century of development, HgCdTe infrared detectors have become the first choice for high performance infrared detectors, which are widely used in various industry sectors, including military ...After approximately half a century of development, HgCdTe infrared detectors have become the first choice for high performance infrared detectors, which are widely used in various industry sectors, including military tracking, military reconnaissance, infrared guidance, infrared warning, weather forecasting, and resource detection. Further development in infrared applications requires future HgCdTe infrared detectors to exhibit features such as larger focal plane array format and thus higher imaging resolution. An effective approach to develop HgCdTe infrared detectors with a larger array format size is to develop the small pixel technology. In this article, we present a review on the developmental history and current status of small pixel technology for HgCdTe infrared detectors, as well as the main challenges and potential solutions in developing this technology. It is predicted that the pixel size of long-wave HgCdTe infrared detectors can be reduced to5 μm, while that of mid-wave HgCdTe infrared detectors can be reduced to 3 μm. Although significant progress has been made in this area, the development of small pixel technology for HgCdTe infrared detectors still faces significant challenges such as flip-chip bonding, interconnection, and charge processing capacity of readout circuits. Various approaches have been proposed to address these challenges, including three-dimensional stacking integration and readout circuits based on microelectromechanical systems.展开更多
Chemical vapor deposition(CVD)-grown diamond films have been developed as irradiation-resistant materials to replace or upgrade current detectors for use in extreme radiation environments. However, their sensitivity i...Chemical vapor deposition(CVD)-grown diamond films have been developed as irradiation-resistant materials to replace or upgrade current detectors for use in extreme radiation environments. However, their sensitivity in practical applications has been inhibited by space charge stability issues caused by defects and impurities in pure diamond crystal materials. In this study, two high-quality CVD-grown single-crystal diamond(SCD) detectors with low content of nitrogen impurities were fabricated and characterized. The intrinsic properties of the SCD samples were characterized using Raman spectroscopy, stereomicroscopy, and X-ray diffraction with the rocking curve mode, cathode luminescence(CL), and infrared and ultraviolet-visible-near infrared spectroscopies. After packaging the detectors, the dark current and energy resolution under α particle irradiation were investigated. Dark currents of less than 5 pA at 100 V were obtained after annealing the electrodes, which is comparable with the optimal value previously reported. The detector that uses a diamond film with higher nitrogen content showed poor energy resolution, whereas the detector with more dislocations showed poor charge collection efficiency(CCE). This demonstrates that the nitrogen content in diamond has a significant effect on the energy resolution of detectors, while the dislocations in diamond largely contribute to the poor CCE of detectors.展开更多
Large-volume liquid scintillator detectors with ultra-low background levels have been widely used to study neutrino physics and search for dark matter.Event vertex and event time are not only useful for event selectio...Large-volume liquid scintillator detectors with ultra-low background levels have been widely used to study neutrino physics and search for dark matter.Event vertex and event time are not only useful for event selection but also essential for the reconstruction of event energy.In this study,four event vertex and event time reconstruction algorithms using charge and time information collected by photomultiplier tubes were analyzed comprehensively.The effects of photomultiplier tube properties were also investigated.The results indicate that the transit time spread is the main effect degrading the vertex reconstruction,while the effect of dark noise is limited.In addition,when the event is close to the detector boundary,the charge information provides better performance for vertex reconstruction than the time information.展开更多
With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studi...With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles.展开更多
基金supported by the project“PARIDE”(Perovskite Advanced Radiotherapy&Imaging Detectors),funded under the Regional Research and Innovation Programme POR-FESR Lazio 2014-2020(project number:A0375-2020-36698).
文摘Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has also been recently demonstrated in both bulk materials and thin films.However,the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours,often reporting degradation of the detection performance.Here it is shown that self-powered direct X-ray detectors,fabricated starting from a FAPbBr_(3)submicrometer-thick film deposition onto a mesoporous TiO_(2)scaffold,can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss,demonstrating ultra-high operational stability and excellent repeatability.No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy,revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film.In addition,trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy^(−1)cm^(−3)at 0 V,an unprecedented value in the field of thin-film-based photoconductors and photodiodes for“hard”X-rays.Finally,prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced.
基金Research of the photoelectric properties of theκ(ε)-Ga_(2)O_(3)films was supported by the Russian Science Foundation,grant number 20-79-10043-P.Fabrication of the ultraviolet detectors based on theκ(ε)-Ga_(2)O_(3)layers was supported by the grant under the Decree of the Government of the Rus-sian Federation No.220 of 09 April 2010(Agreement No.075-15-2022-1132 of 01 July 2022)Research of the structural prop-erties of theκ(ε)-Ga_(2)O_(3)was supported by the St.Petersburg State University,grant number 94034685.
文摘High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.
基金supported by the National Key Research and Development Program of China(No.2020YFE0202002)the National Natural Science Foundation of China(Nos.11875146 and U1932143)。
文摘Topmetal-M2 is a large-area pixel sensor chip fabricated using the GSMC 130 nm CMOS process in 2021.The pixel array of Topmetal-M2 consists of pixels of 400 rows×512 columns with a pixel pitch of 45μm×45μm.The array is divided into 16 subarrays,with pixels of 400 rows×32 columns per subarray.Each pixel incorporates two charge sensors:a diode sensor and a Topmetal sensor.The in-pixel circuit primarily consists of a charge-sensitive amplifier for energy measurements,a discriminator with a peak-holding circuit,and a time-to-amplitude converter for time-of-arrival measurements.The pixel of Topmetal-M2 has a charge input range of~0-3 k e-,a voltage output range of~0-180 mV,and a charge-voltage conversion gain of~59.56μV∕e-.The average equivalent noise charge of Topmetal-M2,which includes the readout electronic system noise,is~43.45 e-.In the scanning mode,the time resolution of Topmetal-M2 is 1 LSB=1.25μs,and the precision is^()7.41μs.At an operating voltage of 1.5 V,Topmetal-M2 has a power consumption of~49 mW∕cm~2.In this article,we provide a comprehensive overview of the chip architecture,pixel working principles,and functional behavior of Topmetal-M2.Furthermore,we present the results of preliminary tests conducted on Topmetal-M2,namely,alpha-particle and soft X-ray tests.
基金supported by the National Natural Science Foundation of China(62305261,62305262)the Natural Science Foundation of Shaanxi Province(2024JC-YBMS-021,2024JC-YBMS-788,2023-JC-YB-065,2023-JC-QN-0693,2022JQ-652)+1 种基金the Xi’an Science and Technology Bureau of University Service Enterprise Project(23GXFW0043)the Cross disciplinary Research and Cultivation Project of Xi’an University of Architecture and Technology(2023JCPY-17)。
文摘As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.
基金supported by the National Natural Science Foundation of China(Nos.11875274 and U1232202)。
文摘In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and performance evaluation.When the beam energy is low,the effect of multiple Coulomb scattering on the measured resolution of the Device Under Test(DUT)must be considered to accurately evaluate the performance of the pixel chips and detectors.This study aimed to investigate the effect of multiple Coulomb scattering on the measured resolution,particularly at low beam energies.Simulations were conducted using Allpix^(2) to study the effects of multiple Coulomb scattering under different beam energies,material budgets,and telescope layouts.The simulations also provided the minimum energy at which the effect of multiple Coulomb scattering could be ignored.Compared with the results of a five-layer detector system tested with an electron beam at DESY,the simulation results were consistent with the beam test results,confirming the reliability of the simulations.
基金This work was supported by the Major Scientific and Technological Special Project of Anhui Province(202103a13010004)the Major Scientific and Technological Special Project of Hefei City(2021DX007)+1 种基金the Key R&D Plan of Shandong Province(2020CXGC010105)the China Postdoctoral Science Foundation(2021M700315).
文摘Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security.
基金support of the Russian Science Foundation,grant number 20-79-10043-P.
文摘Detectors were developed for detecting irradiation in the short-wavelength ultraviolet(UVC)interval using high-quality single-crystallineα-Ga_(2)O_(3) films with Pt interdigital contacts.The films ofα-Ga_(2)O_(3) were grown on planar sapphire substrates with c-plane orientation using halide vapor phase epitaxy.The spectral dependencies of the photo to dark current ratio,responsivity,external quantum efficiency and detectivity of the structures were investigated in the wavelength interval of 200−370 nm.The maximum of photo to dark current ratio,responsivity,external quantum efficiency,and detectivity of the structures were 1.16×10^(4) arb.un.,30.6 A/W,1.65×10^(4)%,and 6.95×10^(15) Hz^(0.5)·cm/W at a wavelength of 230 nm and an applied voltage of 1 V.The high values of photoelectric properties were due to the internal enhancement of the photoresponse associated with strong hole trapping.Theα-Ga_(2)O_(3) film-based UVC detectors can function in self-powered operation mode due to the built-in electric field at the Pt/α-Ga_(2)O_(3) interfaces.At a wavelength of 254 nm and zero applied voltage,the structures exhibit a responsivity of 0.13 mA/W and an external quantum efficiency of 6.2×10^(−2)%.The UVC detectors based on theα-Ga_(2)O_(3) films demonstrate high-speed performance with a rise time of 18 ms in self-powered mode.
基金Supported by the National Natural Science Foundation of China(NSFC)(61904183,61974152,62104237,62004205)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202057)+1 种基金Shanghai Science and Technology Committee Rising-Star Program(20QA1410500)Shanghai Sail Plans(21YF1455000)。
文摘In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.
基金supported by the National Magnetic Confinement Fusion Program of China(No.2019YFE03020002)the National Natural Science Foundation of China(Nos.12205085 and12125502)。
文摘Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV.
基金supported by the Strategic Priority Program on Space Science,the Chinese Academy of Sciences,grant Nos.XDA15360102,XDA15360300 and E02212A02Sthe National Natural Science Foundation of China(Project:12061131007)。
文摘The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)mission is designed to monitor the Gamma-Ray Bursts(GRBs)associated with gravitational waves and other high-energy transient sources.The mission consists of two microsatellites which are planned to operate at the opposite sides of the Earth.Each GECAM satellite could detect and localize GRBs in about 8 keV-5 MeV with its 25 Gamma-Ray Detectors(GRDs).In this work,we report the in-flight energy calibration of GRDs using the characteristic gamma-ray lines in the background spectra,and show their performance evolution during the commissioning phase.Besides,a preliminary cross-calibration of energy response with Fermi GBM data is also presented,validating the energy response of GRDs.
文摘Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.
文摘Photon-counting computed tomography(PCCT)represents a significant advancement in pediatric cardiovascular imaging.Traditional CT systems employ energy-integrating detectors that convert X-ray photons into visible light,whereas PCCT utilizes photon-counting detectors that directly transform X-ray photons into electric signals.This direct conversion allows photon-counting detectors to sort photons into discrete energy levels,thereby enhancing image quality through superior noise reduction,improved spatial and contrast resolution,and reduced artifacts.In pediatric applications,PCCT offers substantial benefits,including lower radiation doses,which may help reduce the risk of malignancy in pediatric patients,with perhaps greater potential to benefit those with repeated exposure from a young age.Enhanced spatial resolution facilitates better visualization of small structures,vital for diagnosing congenital heart defects.Additionally,PCCT’s spectral capabilities improve tissue characterization and enable the creation of virtual monoenergetic images,which enhance soft-tissue contrast and potentially reduce contrast media doses.Initial clinical results indicate that PCCT provides superior image quality and diagnostic accuracy compared to conven-tional CT,particularly in challenging pediatric cardiovascular cases.As PCCT technology matures,further research and standardized protocols will be essential to fully integrate it into pediatric imaging practices,ensuring optimized diagnostic outcomes and patient safety.
文摘We investigate the contact characteristics of bi-layer thin films, Ti(20nm)/Al(200nm) on Si-doped n-type A10.6 Ga0.4 N films grown on sapphire substrate. The surface treatment was aqua regia boiling before metallization and annealing after metallization at different conditions in N2 ambient. High resolution X-ray diffractometery analysis was carried out on the contacts and the surface interfaces of these conditions were compared. A specific contact resistivity pc was determined using the circular transmission line method via current-voltage measurements. A pc of 3.42 × 10^-4 Ω·cm^2 was achieved when annealed at 670℃ for 90s. Then, this ideal ohmic contact was used in back-illuminated solar-blind AlGaN p- i-n detectors and the detectors' performances, such as spectral responsivity, dark-current,and breakdown voltage were optimized.
文摘After approximately half a century of development, HgCdTe infrared detectors have become the first choice for high performance infrared detectors, which are widely used in various industry sectors, including military tracking, military reconnaissance, infrared guidance, infrared warning, weather forecasting, and resource detection. Further development in infrared applications requires future HgCdTe infrared detectors to exhibit features such as larger focal plane array format and thus higher imaging resolution. An effective approach to develop HgCdTe infrared detectors with a larger array format size is to develop the small pixel technology. In this article, we present a review on the developmental history and current status of small pixel technology for HgCdTe infrared detectors, as well as the main challenges and potential solutions in developing this technology. It is predicted that the pixel size of long-wave HgCdTe infrared detectors can be reduced to5 μm, while that of mid-wave HgCdTe infrared detectors can be reduced to 3 μm. Although significant progress has been made in this area, the development of small pixel technology for HgCdTe infrared detectors still faces significant challenges such as flip-chip bonding, interconnection, and charge processing capacity of readout circuits. Various approaches have been proposed to address these challenges, including three-dimensional stacking integration and readout circuits based on microelectromechanical systems.
基金This work was financially supported by the Natural Science Foundation of Beijing,China(No.4192038)National Key Research and Development Program of China(Nos.2016YFE0133200 and 2018YFB0406501)European Union’s Horizon 2020 Research and Innovation Staff Exchange Scheme(No.734578).
文摘Chemical vapor deposition(CVD)-grown diamond films have been developed as irradiation-resistant materials to replace or upgrade current detectors for use in extreme radiation environments. However, their sensitivity in practical applications has been inhibited by space charge stability issues caused by defects and impurities in pure diamond crystal materials. In this study, two high-quality CVD-grown single-crystal diamond(SCD) detectors with low content of nitrogen impurities were fabricated and characterized. The intrinsic properties of the SCD samples were characterized using Raman spectroscopy, stereomicroscopy, and X-ray diffraction with the rocking curve mode, cathode luminescence(CL), and infrared and ultraviolet-visible-near infrared spectroscopies. After packaging the detectors, the dark current and energy resolution under α particle irradiation were investigated. Dark currents of less than 5 pA at 100 V were obtained after annealing the electrodes, which is comparable with the optimal value previously reported. The detector that uses a diamond film with higher nitrogen content showed poor energy resolution, whereas the detector with more dislocations showed poor charge collection efficiency(CCE). This demonstrates that the nitrogen content in diamond has a significant effect on the energy resolution of detectors, while the dislocations in diamond largely contribute to the poor CCE of detectors.
基金supported by the National Natural Science Foundation of China(Nos.11805294 and 11975021)the China Postdoctoral Science Foundation(2018M631013),the Strategic Priority Research Program of Chinese Academy of Sciences(XDA10010900)+1 种基金the Fundamental Research Funds for the Central Universities,Sun Yatsen University(19lgpy268)in part by the CAS Center for Excellence in Particle Physics(CCEPP).
文摘Large-volume liquid scintillator detectors with ultra-low background levels have been widely used to study neutrino physics and search for dark matter.Event vertex and event time are not only useful for event selection but also essential for the reconstruction of event energy.In this study,four event vertex and event time reconstruction algorithms using charge and time information collected by photomultiplier tubes were analyzed comprehensively.The effects of photomultiplier tube properties were also investigated.The results indicate that the transit time spread is the main effect degrading the vertex reconstruction,while the effect of dark noise is limited.In addition,when the event is close to the detector boundary,the charge information provides better performance for vertex reconstruction than the time information.
基金supported by the National Nature Science Foundation of China(Nos.11875191,11890714,11925502,11935001,and 11961141003)the Strategic Priority Research Program(No.CAS XDB1602)。
文摘With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles.