In this paper we consider a single-machine scheduling model with deteriorating jobs and simultaneous learning, and we introduce polynomial solutions for single machine makespan minimization, total flow times minimizat...In this paper we consider a single-machine scheduling model with deteriorating jobs and simultaneous learning, and we introduce polynomial solutions for single machine makespan minimization, total flow times minimization and maximum lateness minimization corresponding to the first and second special cases of our model under some agreeable conditions. However, corresponding to the third special case of our model, we show that the optimal schedules may be different from those of the classical version for the above objective functions.展开更多
This paper considers single-machine scheduling problems in group technology with the jobs' processing times being simple linear functions of their start times.The objective functions are the ~minimizing of makespa...This paper considers single-machine scheduling problems in group technology with the jobs' processing times being simple linear functions of their start times.The objective functions are the ~minimizing of makespan and total weighted completion time.Some optimal conditions and algorithms are given and the fact that the problem of total weighted completion times is NP-hard is proved.展开更多
We consider a scheduling problem involving a single processor utilized by two customers with constant deteriorating jobs, i.e., jobs whose processing times are an increasing function of their starting times. Tradition...We consider a scheduling problem involving a single processor utilized by two customers with constant deteriorating jobs, i.e., jobs whose processing times are an increasing function of their starting times. Traditionally, such scenarios are modeled by assuming that each customer has the same criterion. In practice, this assumption may not hold. Instead of using a single criterion, we examine the implications of minimizing an aggregate scheduling objective function in which jobs belonging to different customers are evaluated with their individual criteria. We examine three basic scheduling criteria: minimizing makespan, minimizing maximum lateness, and minimizing total weighted completion time. We demonstrate all the scheduling problems considered are polynomially solvable.展开更多
The permutation flow shop scheduling problems with deteriorating jobs and rejection on dominant machines were studied.The objectives are to minimize the makespan of scheduled jobs plus the total rejection penalty and ...The permutation flow shop scheduling problems with deteriorating jobs and rejection on dominant machines were studied.The objectives are to minimize the makespan of scheduled jobs plus the total rejection penalty and the total completion time of scheduled jobs plus the total rejection penalty.For each objective, polynomial time algorithms based on dynamic programming were presented.展开更多
This paper investigates the common due-window assignment scheduling problem with deteriorating jobs on a single machine in which the processing time of a job is a proportional function of its starting time.The goal is...This paper investigates the common due-window assignment scheduling problem with deteriorating jobs on a single machine in which the processing time of a job is a proportional function of its starting time.The goal is to minimize the maximum value of earliness and tardiness penalties,as well as due-window location cost,and size cost.Depending on whether the location and size of due-window are known,this paper studies three relevant cases,all of which are solvable in polynomial time.展开更多
We consider bounded parallel-batch scheduling with proportional-linear deteriorating jobs and the objective to minimize the total completion time.We give some properties of optimal schedules for the problem and presen...We consider bounded parallel-batch scheduling with proportional-linear deteriorating jobs and the objective to minimize the total completion time.We give some properties of optimal schedules for the problem and present for it a dynamic programming algorithm running in O(b^(2)m^(2)2^(m))time,where b is the size of a batch and m is the number of distinct deterioration rates.展开更多
In this paper, a parallel machine scheduling problem was considered , where the processing time of a job is a simple linear function of its starting time. The objective is to minimize makespan. A fully polynomial time...In this paper, a parallel machine scheduling problem was considered , where the processing time of a job is a simple linear function of its starting time. The objective is to minimize makespan. A fully polynomial time approximation scheme for the problem of scheduling n deteriorating jobs on two identical machines was worked out. Furthermore, the result was generalized to the case of a fixed number of machines.展开更多
文摘In this paper we consider a single-machine scheduling model with deteriorating jobs and simultaneous learning, and we introduce polynomial solutions for single machine makespan minimization, total flow times minimization and maximum lateness minimization corresponding to the first and second special cases of our model under some agreeable conditions. However, corresponding to the third special case of our model, we show that the optimal schedules may be different from those of the classical version for the above objective functions.
文摘This paper considers single-machine scheduling problems in group technology with the jobs' processing times being simple linear functions of their start times.The objective functions are the ~minimizing of makespan and total weighted completion time.Some optimal conditions and algorithms are given and the fact that the problem of total weighted completion times is NP-hard is proved.
文摘We consider a scheduling problem involving a single processor utilized by two customers with constant deteriorating jobs, i.e., jobs whose processing times are an increasing function of their starting times. Traditionally, such scenarios are modeled by assuming that each customer has the same criterion. In practice, this assumption may not hold. Instead of using a single criterion, we examine the implications of minimizing an aggregate scheduling objective function in which jobs belonging to different customers are evaluated with their individual criteria. We examine three basic scheduling criteria: minimizing makespan, minimizing maximum lateness, and minimizing total weighted completion time. We demonstrate all the scheduling problems considered are polynomially solvable.
文摘The permutation flow shop scheduling problems with deteriorating jobs and rejection on dominant machines were studied.The objectives are to minimize the makespan of scheduled jobs plus the total rejection penalty and the total completion time of scheduled jobs plus the total rejection penalty.For each objective, polynomial time algorithms based on dynamic programming were presented.
基金supported by LiaoNing Revitalization Talents Program(No.XLYC2002017).
文摘This paper investigates the common due-window assignment scheduling problem with deteriorating jobs on a single machine in which the processing time of a job is a proportional function of its starting time.The goal is to minimize the maximum value of earliness and tardiness penalties,as well as due-window location cost,and size cost.Depending on whether the location and size of due-window are known,this paper studies three relevant cases,all of which are solvable in polynomial time.
基金This work was supported by the National Natural Science Foundation of China(Nos.11201259,11071142,71101081)the Doctoral Fund of the Ministry of Education(Nos.20123705120001,20123705120003)+2 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2011AL017,ZR2010AM034)Doctoral Research Fund(No.20110130)and Postdoctoral Researcher of Qufu Normal UniversityWe thank the editor an。
文摘We consider bounded parallel-batch scheduling with proportional-linear deteriorating jobs and the objective to minimize the total completion time.We give some properties of optimal schedules for the problem and present for it a dynamic programming algorithm running in O(b^(2)m^(2)2^(m))time,where b is the size of a batch and m is the number of distinct deterioration rates.
基金supported by the National Natural Science Foundation of China (Grant No.10101010)
文摘In this paper, a parallel machine scheduling problem was considered , where the processing time of a job is a simple linear function of its starting time. The objective is to minimize makespan. A fully polynomial time approximation scheme for the problem of scheduling n deteriorating jobs on two identical machines was worked out. Furthermore, the result was generalized to the case of a fixed number of machines.