The present paper describes the ashing and atomization processes in silicon analysis by electrothermally atomised atomic absorption spectrometry(EAAAS) with an uncoat-ed graphite tube, a pyrolytically coated graphite ...The present paper describes the ashing and atomization processes in silicon analysis by electrothermally atomised atomic absorption spectrometry(EAAAS) with an uncoat-ed graphite tube, a pyrolytically coated graphite tube and a tungsten-coated graphitetube. The sensitivity and linear range of three graphite tubes were compared. By using optical temperature control accessory, the signals are enhanced by a factor of 2 and the germanium interferences in the determination of silicon are eliminated. The effects of time constant and carrier gas flow-rate on the determination of silicon were also tested. The sample can be directly analyzed in its aqueous solution without any pretreatment. The measurements of samples containing 0. 2 μg/mL and 0. 4 μg/mL silicon were run ten times and the variation coefficient is 4. 9% and 2.6%, respectively. The recovery tests for carboxyethyl germanium sesquioxide(Ge-132) synthesized and imported were performed, and the recoveries are 97. 0% and 110%, respectively. Keywords Carboxyethyl germanium sesquioxide, Electrothermally atomised atomic absorption spectrometry, Silicon展开更多
文摘The present paper describes the ashing and atomization processes in silicon analysis by electrothermally atomised atomic absorption spectrometry(EAAAS) with an uncoat-ed graphite tube, a pyrolytically coated graphite tube and a tungsten-coated graphitetube. The sensitivity and linear range of three graphite tubes were compared. By using optical temperature control accessory, the signals are enhanced by a factor of 2 and the germanium interferences in the determination of silicon are eliminated. The effects of time constant and carrier gas flow-rate on the determination of silicon were also tested. The sample can be directly analyzed in its aqueous solution without any pretreatment. The measurements of samples containing 0. 2 μg/mL and 0. 4 μg/mL silicon were run ten times and the variation coefficient is 4. 9% and 2.6%, respectively. The recovery tests for carboxyethyl germanium sesquioxide(Ge-132) synthesized and imported were performed, and the recoveries are 97. 0% and 110%, respectively. Keywords Carboxyethyl germanium sesquioxide, Electrothermally atomised atomic absorption spectrometry, Silicon