To subtract the slit function from the measured spectrum, a wavelet-based deconvolution method is proposed to obtain a regularized solution of the problem. The method includes reconstructing the signal from the wavele...To subtract the slit function from the measured spectrum, a wavelet-based deconvolution method is proposed to obtain a regularized solution of the problem. The method includes reconstructing the signal from the wavelet modulus maxima. For the purpose of maxima selection, the spatially selective noise filtration technique was used to distinguish modulus maxima produced by signal from the one created by noise. To test the method, sodium spectrum measured at a wide slit was deconvolved. He-Ne spectrum measured at the corresponding slit width was used as slit function. Sodium measured at a narrow slit was used as the reference spectrum. The deconvolutton result shows that this method can enhance the resolution of the degraded spectrum greatly.展开更多
In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener fi...In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener filter is used to obtain the ultrasonic reflectivity function through wavelet-based models. A new approach to the parameter estimation of the inverse filtering step is proposed in the nondestructive evaluation field, which is based on the theory of Fourier-Wavelet regularized deconvolution (ForWaRD). This new approach can be viewed as a solution to the open problem of adaptation of the ForWaRD framework to perform the convolution kernel estimation and deconvolution interdependently. The results indicate stable solutions of the esti- mated pulse and an improvement in the radio-frequency (RF) signal taking into account its signal-to-noise ratio (SNR) and axial resolution. Simulations and experiments showed that the proposed approach can provide robust and optimal estimates of the reflectivity function.展开更多
A new method of resolving overlapped peak, Fourier self-deconvolution (FSD) using approximation CN obtained from frequency domain wavelet transform of F(ω) yielded by Fourier transform of overlapped peak signals ...A new method of resolving overlapped peak, Fourier self-deconvolution (FSD) using approximation CN obtained from frequency domain wavelet transform of F(ω) yielded by Fourier transform of overlapped peak signals f(t) as the linear function, was presented in this paper. Compared with classical FSD, the new method exhibits excellent resolution for different overlapped peak signals such as HPLC signals, and have some characteristics such as an extensive applicability for any overlapped peak shape signals and a simple operation because of no selection procedure of the linear function. Its excellent resolution for those different overlapped peak signals is mainly because F(ω) obtained from Fourier transform of f(t) and CN obtained from wavelet transform of F(ω) have the similar linearity and peak width. The effect of those fake peaks can be eliminated by the algorithm proposed by authors. This method has good potential in the process of different overlapped peak signals.展开更多
In order to extract the cardiac characteristics in electrocardiogram (ECG), a feature extraction technique was developed based on wavelet domain Lorentz differential deconvolution. During the feature extraction of QRS...In order to extract the cardiac characteristics in electrocardiogram (ECG), a feature extraction technique was developed based on wavelet domain Lorentz differential deconvolution. During the feature extraction of QRS complex, baseline drifts were firstly removed from raw ECG records by a mathematical morphology method and the feature sub-band of QRS complex was separated by using wavelet transform. Then an evolving Lorentz differential deconvolution technique was applied to estimating the local features of QRS complex from this sub-band. During the feature extraction of P and T waves, the above steps were similarly employed and, before wavelet transform, QRS complex was eliminated through locating their positions to avoid relevant disturbance. The proposed technique achieved a recognition of 99.37% for QRS recognition and a detection rate of 98.62% for P waves detection when tested with the MIT/BIH Database. And validated with the QT Database, the results of QT intervals detection also showed an obvious improvement (85.26% when target domain less than 14 ms and 95.34% when target domain less than 28 ms separately on average).展开更多
Deconvolution is widely used to increase the resolution of seismic data. To compare the resolution ability of conventional spectrum whitening deconvolution to thin layers with that of welldriven deconvolution, a compl...Deconvolution is widely used to increase the resolution of seismic data. To compare the resolution ability of conventional spectrum whitening deconvolution to thin layers with that of welldriven deconvolution, a complex sedimentary geological model was designed, and then the simulated seismic data were processed respectively by each of the two methods. The amplitude spectrum of seismic data was almost white after spectrum whitening, but the wavelet resolution was low. The amplitude spectrum after well-driven deconvolution deviated from white spectrum, but the wavelet resolution was high. Further analysis showed that if an actual reflectivity series could not well satisfy the hypothesis of white spectrum, spectrum whitening deconvolution had a potential risk of wavelet distortion, which might lead to a pitfall in high resolution seismic data interpretation. On the other hand, the wavelet after well- driven deconvolution had higher resolution both in the time and frequency domains. It is favorable for high resolution seismic interpretation and reservoir prediction.展开更多
Ringing artifact degradations always appear in the deconvolution of geophysical data. To address this problem, we propose a postprocessing approach to suppress ringing artifacts that uses a novel anisotropic diffusion...Ringing artifact degradations always appear in the deconvolution of geophysical data. To address this problem, we propose a postprocessing approach to suppress ringing artifacts that uses a novel anisotropic diffusion based on a stationary wavelet transform (SWT) algorithm. In this paper, we discuss the ringing artifact suppression problem and analyze the characteristics of the deconvolu- tion ringing artifact. The deconvolution data containing ringing artifacts are decomposed into different SWT sub- bands for analysis, and a new multiscale adaptive aniso- tropic filter is developed to suppress these degradations. Finally, we demonstrate the performance of the proposed method and describe the experiments in detail.展开更多
The preconditioned conjugate gradient deconvolution method combines the realization of sparse deconvolution and the optimal preconditioned conjugate gradient method to invert to reflection coefficients. This method ca...The preconditioned conjugate gradient deconvolution method combines the realization of sparse deconvolution and the optimal preconditioned conjugate gradient method to invert to reflection coefficients. This method can enhance the frequency of seismic data processing and widen the valid frequency bandwidth. Considering the time-varying nature of seismic signals, we replace the constant wavelet with a multi-scale time-varying wavelet during deconvolution. Numerical tests show that this method can obtain good application results.展开更多
In this paper, we propose a novel seismic blind deconvolution approach based on the Spearman’s rho in the case of band-limited seismic data with a low dominant frequency and short data records. The Spearman’s rho is...In this paper, we propose a novel seismic blind deconvolution approach based on the Spearman’s rho in the case of band-limited seismic data with a low dominant frequency and short data records. The Spearman’s rho is a measure of the dependence between two continuous random variables without the influence of the marginal distributions, by which a new criterion for blind deconvolution is constructed. The optimization program for new criterion of blind deconvolution is performed by applying Neidell’s wavelet model to the inverse filter. The noise-free and noisy synthetic data, onshore seismic trace in the Ordos Basin, and offshore stacked section in the Bohai Bay Basin examples show good results of the method.展开更多
The purpose of this study was to analyze the associated spectrum of geomagnetic field,frequencies intensity and the time of occurrence.We calculated the variation of the correlation coefficients,with mobile windows of...The purpose of this study was to analyze the associated spectrum of geomagnetic field,frequencies intensity and the time of occurrence.We calculated the variation of the correlation coefficients,with mobile windows of various sizes,for the recorded magnetic components at different latitudes and latitudes.The observatories we included in our study are USA(Surlari),HON(Honolulu),SBA(Scott Base),KAK(Kakioka),THY(Tihany),UPS(Uppsala),WNG(Wingst)and Yellowknife(YKC).We used the data of these observatories from International Real-time Magnetic Observatory Network(INTERMAGNET)for the geomagnetic storm from October 28-31,2003.We have used for this purpose a series of filtering algorithms,spectral analysis and wavelet with different mother functions at different levels.In the paper,we show the Fourier and wavelet analysis of geomagnetic data recorded at different observatories regarding geomagnetic storms.Fourier analysis hightlights predominant frequencies of magnetic field components.Wavelet analysis provides information about the frequency ranges of magnetic fields,which contain long time intervals for medium frequency information and short time intervals for highlight frequencies,details of the analyzed signals.Also,the wavelet analysis allows us to decompose geomagnetic signals in different waves.The analyses presented are significant for the studies of the geomagnetic storm.The data for the next days after the storm showed a mitigation of the perturbations and a transition to quiet days of the geomagnetic field.展开更多
文摘To subtract the slit function from the measured spectrum, a wavelet-based deconvolution method is proposed to obtain a regularized solution of the problem. The method includes reconstructing the signal from the wavelet modulus maxima. For the purpose of maxima selection, the spatially selective noise filtration technique was used to distinguish modulus maxima produced by signal from the one created by noise. To test the method, sodium spectrum measured at a wide slit was deconvolved. He-Ne spectrum measured at the corresponding slit width was used as slit function. Sodium measured at a narrow slit was used as the reference spectrum. The deconvolutton result shows that this method can enhance the resolution of the degraded spectrum greatly.
基金Project (No. PRC 03-41/2003) supported by the Ministry of Con-struction of Cuba
文摘In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener filter is used to obtain the ultrasonic reflectivity function through wavelet-based models. A new approach to the parameter estimation of the inverse filtering step is proposed in the nondestructive evaluation field, which is based on the theory of Fourier-Wavelet regularized deconvolution (ForWaRD). This new approach can be viewed as a solution to the open problem of adaptation of the ForWaRD framework to perform the convolution kernel estimation and deconvolution interdependently. The results indicate stable solutions of the esti- mated pulse and an improvement in the radio-frequency (RF) signal taking into account its signal-to-noise ratio (SNR) and axial resolution. Simulations and experiments showed that the proposed approach can provide robust and optimal estimates of the reflectivity function.
基金the National Natural Science Foundation of China (No. 20275030) the Natural Science Foundation of Shaanxi Province in China (No. 2004B20).
文摘A new method of resolving overlapped peak, Fourier self-deconvolution (FSD) using approximation CN obtained from frequency domain wavelet transform of F(ω) yielded by Fourier transform of overlapped peak signals f(t) as the linear function, was presented in this paper. Compared with classical FSD, the new method exhibits excellent resolution for different overlapped peak signals such as HPLC signals, and have some characteristics such as an extensive applicability for any overlapped peak shape signals and a simple operation because of no selection procedure of the linear function. Its excellent resolution for those different overlapped peak signals is mainly because F(ω) obtained from Fourier transform of f(t) and CN obtained from wavelet transform of F(ω) have the similar linearity and peak width. The effect of those fake peaks can be eliminated by the algorithm proposed by authors. This method has good potential in the process of different overlapped peak signals.
文摘In order to extract the cardiac characteristics in electrocardiogram (ECG), a feature extraction technique was developed based on wavelet domain Lorentz differential deconvolution. During the feature extraction of QRS complex, baseline drifts were firstly removed from raw ECG records by a mathematical morphology method and the feature sub-band of QRS complex was separated by using wavelet transform. Then an evolving Lorentz differential deconvolution technique was applied to estimating the local features of QRS complex from this sub-band. During the feature extraction of P and T waves, the above steps were similarly employed and, before wavelet transform, QRS complex was eliminated through locating their positions to avoid relevant disturbance. The proposed technique achieved a recognition of 99.37% for QRS recognition and a detection rate of 98.62% for P waves detection when tested with the MIT/BIH Database. And validated with the QT Database, the results of QT intervals detection also showed an obvious improvement (85.26% when target domain less than 14 ms and 95.34% when target domain less than 28 ms separately on average).
基金supported by National 973 Key Basic Research Development Program (No.2007CB209608)National 863 High Technology Research Development Program (No. 2007AA06Z218)
文摘Deconvolution is widely used to increase the resolution of seismic data. To compare the resolution ability of conventional spectrum whitening deconvolution to thin layers with that of welldriven deconvolution, a complex sedimentary geological model was designed, and then the simulated seismic data were processed respectively by each of the two methods. The amplitude spectrum of seismic data was almost white after spectrum whitening, but the wavelet resolution was low. The amplitude spectrum after well-driven deconvolution deviated from white spectrum, but the wavelet resolution was high. Further analysis showed that if an actual reflectivity series could not well satisfy the hypothesis of white spectrum, spectrum whitening deconvolution had a potential risk of wavelet distortion, which might lead to a pitfall in high resolution seismic data interpretation. On the other hand, the wavelet after well- driven deconvolution had higher resolution both in the time and frequency domains. It is favorable for high resolution seismic interpretation and reservoir prediction.
文摘Ringing artifact degradations always appear in the deconvolution of geophysical data. To address this problem, we propose a postprocessing approach to suppress ringing artifacts that uses a novel anisotropic diffusion based on a stationary wavelet transform (SWT) algorithm. In this paper, we discuss the ringing artifact suppression problem and analyze the characteristics of the deconvolu- tion ringing artifact. The deconvolution data containing ringing artifacts are decomposed into different SWT sub- bands for analysis, and a new multiscale adaptive aniso- tropic filter is developed to suppress these degradations. Finally, we demonstrate the performance of the proposed method and describe the experiments in detail.
基金This research is sponsored by Key Project of Knowledge Innovation of chinese Academy of Sciences (No. KZCX1-SW-18) and the Precative Project of the Research Institute of Exploration and Development of Daqing Oilfield Co., Ltd.
文摘The preconditioned conjugate gradient deconvolution method combines the realization of sparse deconvolution and the optimal preconditioned conjugate gradient method to invert to reflection coefficients. This method can enhance the frequency of seismic data processing and widen the valid frequency bandwidth. Considering the time-varying nature of seismic signals, we replace the constant wavelet with a multi-scale time-varying wavelet during deconvolution. Numerical tests show that this method can obtain good application results.
文摘In this paper, we propose a novel seismic blind deconvolution approach based on the Spearman’s rho in the case of band-limited seismic data with a low dominant frequency and short data records. The Spearman’s rho is a measure of the dependence between two continuous random variables without the influence of the marginal distributions, by which a new criterion for blind deconvolution is constructed. The optimization program for new criterion of blind deconvolution is performed by applying Neidell’s wavelet model to the inverse filter. The noise-free and noisy synthetic data, onshore seismic trace in the Ordos Basin, and offshore stacked section in the Bohai Bay Basin examples show good results of the method.
文摘The purpose of this study was to analyze the associated spectrum of geomagnetic field,frequencies intensity and the time of occurrence.We calculated the variation of the correlation coefficients,with mobile windows of various sizes,for the recorded magnetic components at different latitudes and latitudes.The observatories we included in our study are USA(Surlari),HON(Honolulu),SBA(Scott Base),KAK(Kakioka),THY(Tihany),UPS(Uppsala),WNG(Wingst)and Yellowknife(YKC).We used the data of these observatories from International Real-time Magnetic Observatory Network(INTERMAGNET)for the geomagnetic storm from October 28-31,2003.We have used for this purpose a series of filtering algorithms,spectral analysis and wavelet with different mother functions at different levels.In the paper,we show the Fourier and wavelet analysis of geomagnetic data recorded at different observatories regarding geomagnetic storms.Fourier analysis hightlights predominant frequencies of magnetic field components.Wavelet analysis provides information about the frequency ranges of magnetic fields,which contain long time intervals for medium frequency information and short time intervals for highlight frequencies,details of the analyzed signals.Also,the wavelet analysis allows us to decompose geomagnetic signals in different waves.The analyses presented are significant for the studies of the geomagnetic storm.The data for the next days after the storm showed a mitigation of the perturbations and a transition to quiet days of the geomagnetic field.