Emerging long-range industrial IoT applications(e.g.,remote patient monitoring)have increasingly higher requirements for global deterministic delay.Although many existing methods have built deterministic networks in s...Emerging long-range industrial IoT applications(e.g.,remote patient monitoring)have increasingly higher requirements for global deterministic delay.Although many existing methods have built deterministic networks in small-scale networks through centralized computing and resource reservation,they cannot be applied on a global scale.The emerging mega-constellations enable new opportunities for realizing deterministic delay globally.As one constellation(e.g.,Starlink)might be managed by a single operator(e.g.,SpaceX),packets can be routed within deterministic number of hops.Moreover,the path diversity brought by the highly symmetrical network structure in mega-constellations can help to construct a congestion free network by routing.This paper leverages these unique characteristics of mega-constellations to avoid the traditional network congestion caused by multiple inputs and single output,and to determine the routing hops,and thus realizing a global deterministic network(DETSPACE).The model based on the 2D Markov chain theoretically verifies the correctness of DETSPACE.The effectiveness of DETSPACE in different traffic load con-ditions is also verified by extensive simulations.展开更多
Autonomous driving has witnessed rapid advancement;however,ensuring safe and efficient driving in intricate scenarios remains a critical challenge.In particular,traffic roundabouts bring a set of challenges to autonom...Autonomous driving has witnessed rapid advancement;however,ensuring safe and efficient driving in intricate scenarios remains a critical challenge.In particular,traffic roundabouts bring a set of challenges to autonomous driving due to the unpredictable entry and exit of vehicles,susceptibility to traffic flow bottlenecks,and imperfect data in perceiving environmental information,rendering them a vital issue in the practical application of autonomous driving.To address the traffic challenges,this work focused on complex roundabouts with multi-lane and proposed a Perception EnhancedDeepDeterministic Policy Gradient(PE-DDPG)for AutonomousDriving in the Roundabouts.Specifically,themodel incorporates an enhanced variational autoencoder featuring an integrated spatial attention mechanism alongside the Deep Deterministic Policy Gradient framework,enhancing the vehicle’s capability to comprehend complex roundabout environments and make decisions.Furthermore,the PE-DDPG model combines a dynamic path optimization strategy for roundabout scenarios,effectively mitigating traffic bottlenecks and augmenting throughput efficiency.Extensive experiments were conducted with the collaborative simulation platform of CARLA and SUMO,and the experimental results show that the proposed PE-DDPG outperforms the baseline methods in terms of the convergence capacity of the training process,the smoothness of driving and the traffic efficiency with diverse traffic flow patterns and penetration rates of autonomous vehicles(AVs).Generally,the proposed PE-DDPGmodel could be employed for autonomous driving in complex scenarios with imperfect data.展开更多
Naturally fractured rocks contain most of the world's petroleum reserves.This significant amount of oil can be recovered efficiently by gas assisted gravity drainage(GAGD).Although,GAGD is known as one of the most...Naturally fractured rocks contain most of the world's petroleum reserves.This significant amount of oil can be recovered efficiently by gas assisted gravity drainage(GAGD).Although,GAGD is known as one of the most effective recovery methods in reservoir engineering,the lack of available simulation and mathematical models is considerable in these kinds of reservoirs.The main goal of this study is to provide efficient and accurate methods for predicting the GAGD recovery factor using data driven techniques.The proposed models are developed to relate GAGD recovery factor to the various parameters including model height,matrix porosity and permeability,fracture porosity and permeability,dip angle,viscosity and density of wet and non-wet phases,injection rate,and production time.In this investigation,by considering the effective parameters on GAGD recovery factor,three different efficient,smart,and fast models including artificial neural network(ANN),least square support vector machine(LSSVM),and multi-gene genetic programming(MGGP)are developed and compared in both fractured and homogenous porous media.Buckinghamπtheorem is also used to generate dimensionless numbers to reduce the number of input and output parameters.The efficiency of the proposed models is examined through statistical analysis of R-squared,RMSE,MSE,ARE,and AARE.Moreover,the performance of the generated MGGP correlation is compared to the traditional models.Results demonstrate that the ANN model predicts the GAGD recovery factor more accurately than the LSSVM and MGGP models.The maximum R^(2)of 0.9677 and minimum RMSE of 0.0520 values are obtained by the ANN model.Although the MGGP model has the lowest performance among the other used models(the R2 of 0.896 and the RMSE of 0.0846),the proposed MGGP correlation can predict the GAGD recovery factor in fractured and homogenous reservoirs with high accuracy and reliability compared to the traditional models.Results reveal that the employed models can easily predict GAGD recovery factor without requiring complicate governing equations or running complex and time-consuming simulation models.The approach of this research work improves our understanding about the most significant parameters on GAGD recovery and helps to optimize the stages of the process,and make appropriate economic decisions.展开更多
Background:Combined knee valgus and tibial internal rotation(VL+IR)moments have been shown to stress the anterior cruciate ligament(ACL)in several in vitro cadaveric studies.To utilize this knowledge for non-contact A...Background:Combined knee valgus and tibial internal rotation(VL+IR)moments have been shown to stress the anterior cruciate ligament(ACL)in several in vitro cadaveric studies.To utilize this knowledge for non-contact ACL injury prevention in sports,it is necessary to elucidate how the ground reaction force(GRF)acting point(center of pressure(CoP))in the stance foot produces combined knee VL+IR moments in risky maneuvers,such as cuttings.However,the effects of the GRF acting point on the development of the combined knee VL+IR moment in cutting are still unknown.Methods:We first established the deterministic mechanical condition that the CoP position relative to the tibial rotational axis differentiates the GRF vector’s directional probability for developing the combined knee VL+IR moment,and theoretically predicted that when the CoP is posterior to the tibial rotational axis,the GRF vector is more likely to produce the combined knee VL+IR moment than when the CoP is anterior to the tibial rotational axis.Then,we tested a stochastic aspect of our theory in a lab-controlled in vivo experiment.Fourteen females performed 60˚cutting under forefoot/rearfoot strike conditions(10 trials each).The positions of lower limb markers and GRF data were measured,and the knee moment due to GRF vector was calculated.The trials were divided into anterior-and posterior-CoP groups depending on the CoP position relative to the tibial rotational axis at each 10 ms interval from 0 to 100 ms after foot strike,and the occurrence rate of the combined knee VL+IR moment was compared between trial groups.Results:The posterior-CoP group showed significantly higher occurrence rates of the combined knee VL+IR moment(maximum of 82.8%)at every time point than those of the anterior-CoP trials,as theoretically predicted by the deterministic mechanical condition.Conclusion:The rearfoot strikes inducing the posterior CoP should be avoided to reduce the risk of non-contact ACL injury associated with the combined knee VL+IR stress.展开更多
Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary a...Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency.展开更多
A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit tw...A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.展开更多
The separation and detection of particles in suspension are essential for a wide spectrum of applications including medical diagnostics.In this field,microfluidic deterministic lateral displacement(DLD)holds a promise...The separation and detection of particles in suspension are essential for a wide spectrum of applications including medical diagnostics.In this field,microfluidic deterministic lateral displacement(DLD)holds a promise due to the ability of continuous separation of particles by size,shape,deformability,and electrical properties with high resolution.DLD is a passive microfluidic separation technique that has been widely implemented for various bioparticle separations from blood cells to exosomes.DLD techniques have been previously reviewed in 2014.Since then,the field has matured as several physics of DLD have been updated,new phenomena have been discovered,and various designs have been presented to achieve a higher separation performance and throughput.Furthermore,some recent progress has shown new clinical applications and ability to use the DLD arrays as a platform for biomolecules detection.This review provides a thorough discussion on the recent progress in DLD with the topics based on the fundamental studies on DLD models and applications for particle separation and detection.Furthermore,current challenges and potential solutions of DLD are also discussed.We believe that a comprehensive understanding on DLD techniques could significantly contribute toward the advancements in the field for various applications.In particular,the rapid,low-cost,and high-throughput particle separation and detection with DLD have a tremendous impact for point-of-care diagnostics.展开更多
Community resilience is becoming a growing concern for authorities and decision makers.This paper introduces two indicator-based methods to evaluate the resilience of communities based on the PEOPLES framework.PEOPLES...Community resilience is becoming a growing concern for authorities and decision makers.This paper introduces two indicator-based methods to evaluate the resilience of communities based on the PEOPLES framework.PEOPLES is a multi-layered framework that defines community resilience using seven dimensions.Each of the dimensions is described through a set of resilience indicators collected from literature and they are linked to a measure allowing the analytical computation of the indicator’s performance.The first method proposed in this paper requires data on previous disasters as an input and returns as output a performance function for each indicator and a performance function for the whole community.The second method exploits a knowledge-based fuzzy modeling for its implementation.This method allows a quantitative evaluation of the PEOPLES indicators using descriptive knowledge rather than deterministic data including the uncertainty involved in the analysis.The output of the fuzzy-based method is a resilience index for each indicator as well as a resilience index for the community.The paper also introduces an open source online tool in which the first method is implemented.A case study illustrating the application of the first method and the usage of the tool is also provided in the paper.展开更多
The deterministic lateral displacement (DLD) is an important method used to sort particles and cells of different sizes. In this paper, the flexible cell sorting with the DLD method is studied by using a numerical mod...The deterministic lateral displacement (DLD) is an important method used to sort particles and cells of different sizes. In this paper, the flexible cell sorting with the DLD method is studied by using a numerical model based on the immersed boundary-lattice Boltzmann method (IB-LBM). In this model, the fluid motion is solved by the LBM, and the cell membrane-fluid interaction is modeled with the LBM. The proposed model is validated by simulating the rigid particle sorted with the DLD method, and the results are found in good agreement with those measured in experiments. We first study the effect of flexibility on a single cell and multiple cells continuously going through a DLD device. It is found that the cell flexibility can significantly affect the cell path, which means the flexibility could have significant effects on the continuous cell sorting by the DLD method. The sorting characteristics of white blood cells and red blood cells are further studied by varying the spatial distribution of cylinder arrays and the initial cell-cell distance. The numerical results indicate that a well concentrated cell sorting can be obtained under a proper arrangement of cylinder arrays and a large enough initial cell-cell distance.展开更多
The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multistage compressors in steady state environment by introducing...The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multistage compressors in steady state environment by introducing de- terministic correlations (DC) that need to be modeled to close the equation system. The primary purpose of this study was to provide insight into the DC characteristics and the in- fluence of DC on the time-averaged flow field of the APES. In Part 2 of this two-part paper, the influence of DC on the time-averaged flow field was systematically studied; Several time-averaging computations boundary conditions and DC were conducted with various for the downstream stator in a transonic compressor stage, by employing the CFD solver developed in Part 1 of this two-part paper. These results were compared with the time-averaged unsteady flow field and the steady one. The study indicat;d that the circumferential- averaged DC can take into account major part of the unsteady effects on spanwise redistribution of flow fields in compres- sors. Furthermore, it demonstrated that both deterministic stresses and deterministic enthalpy fluxes are necessary to reproduce the time-averaged flow field.展开更多
The exact calculation of point kinetic parameters is very important in nuclear reactor safety assessment, and most sophisticated safety codes such as RELAP5, PARCS,DYN3D, and PARET are using these parameters in their ...The exact calculation of point kinetic parameters is very important in nuclear reactor safety assessment, and most sophisticated safety codes such as RELAP5, PARCS,DYN3D, and PARET are using these parameters in their dynamic models. These parameters include effective delayed neutron fractions as well as mean generation time.These parameters are adjoint-weighted, and adjoint flux is employed as a weighting function in their evaluation.Adjoint flux calculation is an easy task for most of deterministic codes, but its evaluation is cumbersome for Monte Carlo codes. However, in recent years, some sophisticated techniques have been proposed for Monte Carlo-based point kinetic parameters calculation without any need of adjoint flux. The most straightforward scheme is known as the ‘‘prompt method'' and has been used widely in literature. The main objective of this article is dedicated to point kinetic parameters calculation in Tehran research reactor(TRR) using deterministic as well as probabilistic techniques. WIMS-D5B and CITATION codes have been used in deterministic calculation of forward and adjoint fluxes in the TRR core. On the other hand, the MCNP Monte Carlo code has been employed in the ‘‘prompt method''scheme for effective delayed neutron fraction evaluation.Deterministic results have been cross-checked with probabilistic ones and validated with SAR and experimental data. In comparison with experimental results, the relativedifferences of deterministic as well as probabilistic methods are 7.6 and 3.2%, respectively. These quantities are10.7 and 6.4%, respectively, in comparison with SAR report.展开更多
This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding...This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel.展开更多
The Various physical mechanisms governing river flow dynamics act on a wide range of temporal and spatial scales. This spatio-temporal variability has been believed to be influenced by a large number of variables. In ...The Various physical mechanisms governing river flow dynamics act on a wide range of temporal and spatial scales. This spatio-temporal variability has been believed to be influenced by a large number of variables. In the light of this, an attempt was made in this paper to examine whether the daily flow sequence of the Benue River exhibits low-dimensional chaos;that is, if or not its dynamics could be explained by a small number of effective degrees of freedom. To this end, nonlinear analysis of the flow sequence was done by evaluating the correlation dimension based on phase space reconstruction and maximal Lyapunov estimation as well as nonlinear prediction. Results obtained in all instances considered indicate that there is no discernible evidence to suggest that the daily flow sequence of the Benue River exhibit nonlinear deterministic chaotic signatures. Thus, it may be conjectured that the daily flow time series span a wide dynamical range between deterministic chaos and periodic signal contaminated with additive noise;that is, by either measurement or dynamical noise. However, contradictory results abound on the existence of low-dimensional chaos in daily streamflows. Hence, it is paramount to note that if the existence of low-dimension deterministic component is reliably verified, it is necessary to investigate its origin, dependence on the space-time behavior of precipitation and therefore on climate and role of the inflow-runoff mechanism.展开更多
The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multi- stage compressors in steady state environment by introduc-...The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multi- stage compressors in steady state environment by introduc- ing deterministic correlations (DC) that need to be modeled to close the equation system. The primary purpose of this study is to provide insight into the DC characteristics and the influence of DC on the time-averaged flow field of the APES. In Part 1 of this two-part paper, firstly a 3D viscous unsteady and time-averaging flow CFD solver is developed to investi- gate the APES technique. Then steady and unsteady simu- lations are conducted in a transonic compressor stage. The results from both simulations are compared to highlight the significance of the unsteady interactions. Furthermore, the distribution characteristics of DC are studied and the DC at the rotor/stator interface are compared with their spatial cor- relations (SC). Lastly, steady and time-averaging (employing APES with DC) simulations for the downstream stator alone are conducted employing DC derived from the unsteady re- suits. The results from steady and time-averaging simula- tions are compared with the time-averaged unsteady results. The comparisons demonstrate that the simulation employing APES with DC can reproduce the time-averaged field and the 3D viscous time-averaging flow solver is validated.展开更多
The results of an accident analysis for the loss of offsite power(LOOP)scenario in a reference Bushehr-1 VVER-1000/V446 nuclear power plant(NPP)are presented in this paper.This study attempted to provide a better anal...The results of an accident analysis for the loss of offsite power(LOOP)scenario in a reference Bushehr-1 VVER-1000/V446 nuclear power plant(NPP)are presented in this paper.This study attempted to provide a better analysis of LOOP accident management by integrating deterministic and probabilistic approaches.The RELAP5 code was used to investigate the occurrence of specific thermal–hydraulic phenomena.The probabilistic safety assessment of the LOOP accident is presented using the SAPHIRE software.LOOP accident data were extracted from the Bushehr NPP final safety analysis reports and probabilistic safety analysis reports.A deterministic approach was used to reduce the core damage frequency in the probabilistic analysis of LOOP accidents.The probabilistic approach was used to better observe the philosophy of defense in depth and safety margins in the deterministic analysis of the LOOP accident.The results show that the integration of the two approaches in LOOP accident investigations improved accident control.展开更多
We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used a...We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used as the quantum channel.Since these states are unchanged through the collective dephasing noisy channel,the effect of the channel noise can be perfectly overcome.Simultaneously,the security against some usual attacks canbe ensured by utilizing the various checking procedures.Furthermore,these two schemes are feasible with present-daytechnique.展开更多
We present a novel protocol for deterministic secure quantum communication by using the lour-qubit cluster state as quantum channel. It is shown that two legitimate users can directly transmit the secret messages base...We present a novel protocol for deterministic secure quantum communication by using the lour-qubit cluster state as quantum channel. It is shown that two legitimate users can directly transmit the secret messages based on Bellbasis measurements and classical communication. The present protocol makes use of the ideas of block transmission and decoy particle checking technique. It has a high capacity as each cluster state can carry two 5its of information, and has a high intrinsic efficieney 5ecause almost all the instances except the decoy checking particles (its numSer is negligible) are useful. Furthermore, this protocol is feasible with present-day technique.展开更多
Compressed Sensing (CS) is an emerging technology in the field of signal processing, which can recover a sparse signal by taking very few samples and solving a linear programming problem. In this paper, we study the a...Compressed Sensing (CS) is an emerging technology in the field of signal processing, which can recover a sparse signal by taking very few samples and solving a linear programming problem. In this paper, we study the application of Low-Density Parity-Check (LDPC) Codes in CS. Firstly, we find a sufficient condition for a binary matrix to satisfy the Restricted Isometric Property (RIP). Then, by employing the LDPC codes based on Berlekamp-Justesen (B-J) codes, we construct two classes of binary structured matrices and show that these matrices satisfy RIP. Thus, the proposed matrices could be used as sensing matrices for CS. Finally, simulation results show that the performance of the proposed matrices can be comparable with the widely used random sensing matrices.展开更多
A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the...A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters.展开更多
We present a deterministic nondestructive hyperentangled Bell state analysis protocol for photons entangled in three degrees of freedom(DOFs),including polarization,spatial-mode,and time-bin DOFs.The polarization Bell...We present a deterministic nondestructive hyperentangled Bell state analysis protocol for photons entangled in three degrees of freedom(DOFs),including polarization,spatial-mode,and time-bin DOFs.The polarization Bell state analyzer and spatial-mode Bell state analyzer are constructed by polarization parity-check quantum nondemolition detector(P-QND)and spatial-mode parity-check quantum nondemolition detector(S-QND)using cross-Kerr nonlinearity,respectively.The time-bin Bell state analyzer is constructed by the swap gate for polarization state and time-bin state of a photon(P-T swap gate)and P-QND.The Bell states analyzer for one DOF will not destruct the Bell states of other two DOFs,so the polarization-spatial-time-bin hyperentangled Bell states can be determinately distinguished without destruction.This deterministic nondestructive state analysis method has useful applications in quantum information protocols.展开更多
基金This work is supported by National Key Research and Development Plan of China(2022YFB3105204).
文摘Emerging long-range industrial IoT applications(e.g.,remote patient monitoring)have increasingly higher requirements for global deterministic delay.Although many existing methods have built deterministic networks in small-scale networks through centralized computing and resource reservation,they cannot be applied on a global scale.The emerging mega-constellations enable new opportunities for realizing deterministic delay globally.As one constellation(e.g.,Starlink)might be managed by a single operator(e.g.,SpaceX),packets can be routed within deterministic number of hops.Moreover,the path diversity brought by the highly symmetrical network structure in mega-constellations can help to construct a congestion free network by routing.This paper leverages these unique characteristics of mega-constellations to avoid the traditional network congestion caused by multiple inputs and single output,and to determine the routing hops,and thus realizing a global deterministic network(DETSPACE).The model based on the 2D Markov chain theoretically verifies the correctness of DETSPACE.The effectiveness of DETSPACE in different traffic load con-ditions is also verified by extensive simulations.
基金supported in part by the projects of the National Natural Science Foundation of China(62376059,41971340)Fujian Provincial Department of Science and Technology(2023XQ008,2023I0024,2021Y4019),Fujian Provincial Department of Finance(GY-Z230007,GYZ23012)Fujian Key Laboratory of Automotive Electronics and Electric Drive(KF-19-22001).
文摘Autonomous driving has witnessed rapid advancement;however,ensuring safe and efficient driving in intricate scenarios remains a critical challenge.In particular,traffic roundabouts bring a set of challenges to autonomous driving due to the unpredictable entry and exit of vehicles,susceptibility to traffic flow bottlenecks,and imperfect data in perceiving environmental information,rendering them a vital issue in the practical application of autonomous driving.To address the traffic challenges,this work focused on complex roundabouts with multi-lane and proposed a Perception EnhancedDeepDeterministic Policy Gradient(PE-DDPG)for AutonomousDriving in the Roundabouts.Specifically,themodel incorporates an enhanced variational autoencoder featuring an integrated spatial attention mechanism alongside the Deep Deterministic Policy Gradient framework,enhancing the vehicle’s capability to comprehend complex roundabout environments and make decisions.Furthermore,the PE-DDPG model combines a dynamic path optimization strategy for roundabout scenarios,effectively mitigating traffic bottlenecks and augmenting throughput efficiency.Extensive experiments were conducted with the collaborative simulation platform of CARLA and SUMO,and the experimental results show that the proposed PE-DDPG outperforms the baseline methods in terms of the convergence capacity of the training process,the smoothness of driving and the traffic efficiency with diverse traffic flow patterns and penetration rates of autonomous vehicles(AVs).Generally,the proposed PE-DDPGmodel could be employed for autonomous driving in complex scenarios with imperfect data.
文摘Naturally fractured rocks contain most of the world's petroleum reserves.This significant amount of oil can be recovered efficiently by gas assisted gravity drainage(GAGD).Although,GAGD is known as one of the most effective recovery methods in reservoir engineering,the lack of available simulation and mathematical models is considerable in these kinds of reservoirs.The main goal of this study is to provide efficient and accurate methods for predicting the GAGD recovery factor using data driven techniques.The proposed models are developed to relate GAGD recovery factor to the various parameters including model height,matrix porosity and permeability,fracture porosity and permeability,dip angle,viscosity and density of wet and non-wet phases,injection rate,and production time.In this investigation,by considering the effective parameters on GAGD recovery factor,three different efficient,smart,and fast models including artificial neural network(ANN),least square support vector machine(LSSVM),and multi-gene genetic programming(MGGP)are developed and compared in both fractured and homogenous porous media.Buckinghamπtheorem is also used to generate dimensionless numbers to reduce the number of input and output parameters.The efficiency of the proposed models is examined through statistical analysis of R-squared,RMSE,MSE,ARE,and AARE.Moreover,the performance of the generated MGGP correlation is compared to the traditional models.Results demonstrate that the ANN model predicts the GAGD recovery factor more accurately than the LSSVM and MGGP models.The maximum R^(2)of 0.9677 and minimum RMSE of 0.0520 values are obtained by the ANN model.Although the MGGP model has the lowest performance among the other used models(the R2 of 0.896 and the RMSE of 0.0846),the proposed MGGP correlation can predict the GAGD recovery factor in fractured and homogenous reservoirs with high accuracy and reliability compared to the traditional models.Results reveal that the employed models can easily predict GAGD recovery factor without requiring complicate governing equations or running complex and time-consuming simulation models.The approach of this research work improves our understanding about the most significant parameters on GAGD recovery and helps to optimize the stages of the process,and make appropriate economic decisions.
基金supported by the Grant-in-Aid for Young Scientists(B)Project(Grant No.24700716)funded by the Ministry of Education,Culture,Sports,Science and Technology,Japan.
文摘Background:Combined knee valgus and tibial internal rotation(VL+IR)moments have been shown to stress the anterior cruciate ligament(ACL)in several in vitro cadaveric studies.To utilize this knowledge for non-contact ACL injury prevention in sports,it is necessary to elucidate how the ground reaction force(GRF)acting point(center of pressure(CoP))in the stance foot produces combined knee VL+IR moments in risky maneuvers,such as cuttings.However,the effects of the GRF acting point on the development of the combined knee VL+IR moment in cutting are still unknown.Methods:We first established the deterministic mechanical condition that the CoP position relative to the tibial rotational axis differentiates the GRF vector’s directional probability for developing the combined knee VL+IR moment,and theoretically predicted that when the CoP is posterior to the tibial rotational axis,the GRF vector is more likely to produce the combined knee VL+IR moment than when the CoP is anterior to the tibial rotational axis.Then,we tested a stochastic aspect of our theory in a lab-controlled in vivo experiment.Fourteen females performed 60˚cutting under forefoot/rearfoot strike conditions(10 trials each).The positions of lower limb markers and GRF data were measured,and the knee moment due to GRF vector was calculated.The trials were divided into anterior-and posterior-CoP groups depending on the CoP position relative to the tibial rotational axis at each 10 ms interval from 0 to 100 ms after foot strike,and the occurrence rate of the combined knee VL+IR moment was compared between trial groups.Results:The posterior-CoP group showed significantly higher occurrence rates of the combined knee VL+IR moment(maximum of 82.8%)at every time point than those of the anterior-CoP trials,as theoretically predicted by the deterministic mechanical condition.Conclusion:The rearfoot strikes inducing the posterior CoP should be avoided to reduce the risk of non-contact ACL injury associated with the combined knee VL+IR stress.
文摘Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60572071 and 60873101)Natural Science Foundation of Jiangsu Province (Grant Nos BM2006504, BK2007104 and BK2008209)College Natural Science Foundation of Jiangsu Province (Grant No 06KJB520137)
文摘A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.
基金the scholarship from NUS Graduate School for integrative science and engineering and funding support from Ministry of Education Academic Research Fund,Singapore(AcRF:R-397-000-270-114,R-397-000-183-112).
文摘The separation and detection of particles in suspension are essential for a wide spectrum of applications including medical diagnostics.In this field,microfluidic deterministic lateral displacement(DLD)holds a promise due to the ability of continuous separation of particles by size,shape,deformability,and electrical properties with high resolution.DLD is a passive microfluidic separation technique that has been widely implemented for various bioparticle separations from blood cells to exosomes.DLD techniques have been previously reviewed in 2014.Since then,the field has matured as several physics of DLD have been updated,new phenomena have been discovered,and various designs have been presented to achieve a higher separation performance and throughput.Furthermore,some recent progress has shown new clinical applications and ability to use the DLD arrays as a platform for biomolecules detection.This review provides a thorough discussion on the recent progress in DLD with the topics based on the fundamental studies on DLD models and applications for particle separation and detection.Furthermore,current challenges and potential solutions of DLD are also discussed.We believe that a comprehensive understanding on DLD techniques could significantly contribute toward the advancements in the field for various applications.In particular,the rapid,low-cost,and high-throughput particle separation and detection with DLD have a tremendous impact for point-of-care diagnostics.
基金European Research Council under Grant Agreement No.ERC_IDEAL RESCUE_637842 of the project IDEAL RESCUE-Integrated Design and Control of Sustainable Communities during Emergencies
文摘Community resilience is becoming a growing concern for authorities and decision makers.This paper introduces two indicator-based methods to evaluate the resilience of communities based on the PEOPLES framework.PEOPLES is a multi-layered framework that defines community resilience using seven dimensions.Each of the dimensions is described through a set of resilience indicators collected from literature and they are linked to a measure allowing the analytical computation of the indicator’s performance.The first method proposed in this paper requires data on previous disasters as an input and returns as output a performance function for each indicator and a performance function for the whole community.The second method exploits a knowledge-based fuzzy modeling for its implementation.This method allows a quantitative evaluation of the PEOPLES indicators using descriptive knowledge rather than deterministic data including the uncertainty involved in the analysis.The output of the fuzzy-based method is a resilience index for each indicator as well as a resilience index for the community.The paper also introduces an open source online tool in which the first method is implemented.A case study illustrating the application of the first method and the usage of the tool is also provided in the paper.
基金supported by the National Natural Science Foundation of China (Grant 81301291)the Beijing Higher Education Young Elite Teacher Project (Grant YETP1208)UNSW Special Research Grants Program
文摘The deterministic lateral displacement (DLD) is an important method used to sort particles and cells of different sizes. In this paper, the flexible cell sorting with the DLD method is studied by using a numerical model based on the immersed boundary-lattice Boltzmann method (IB-LBM). In this model, the fluid motion is solved by the LBM, and the cell membrane-fluid interaction is modeled with the LBM. The proposed model is validated by simulating the rigid particle sorted with the DLD method, and the results are found in good agreement with those measured in experiments. We first study the effect of flexibility on a single cell and multiple cells continuously going through a DLD device. It is found that the cell flexibility can significantly affect the cell path, which means the flexibility could have significant effects on the continuous cell sorting by the DLD method. The sorting characteristics of white blood cells and red blood cells are further studied by varying the spatial distribution of cylinder arrays and the initial cell-cell distance. The numerical results indicate that a well concentrated cell sorting can be obtained under a proper arrangement of cylinder arrays and a large enough initial cell-cell distance.
基金supported by the National Natural Science Foundation of China (51006006,51136003,50976010,50976009)the National Basic Research Program of China (2012CB72 0205)+2 种基金the Aeronautical Science Foundation of China (2010ZB51)the 111 Project (B08009)the National Science Special Foundation for Post-doctoral Scientists of China (201104049)
文摘The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multistage compressors in steady state environment by introducing de- terministic correlations (DC) that need to be modeled to close the equation system. The primary purpose of this study was to provide insight into the DC characteristics and the in- fluence of DC on the time-averaged flow field of the APES. In Part 2 of this two-part paper, the influence of DC on the time-averaged flow field was systematically studied; Several time-averaging computations boundary conditions and DC were conducted with various for the downstream stator in a transonic compressor stage, by employing the CFD solver developed in Part 1 of this two-part paper. These results were compared with the time-averaged unsteady flow field and the steady one. The study indicat;d that the circumferential- averaged DC can take into account major part of the unsteady effects on spanwise redistribution of flow fields in compres- sors. Furthermore, it demonstrated that both deterministic stresses and deterministic enthalpy fluxes are necessary to reproduce the time-averaged flow field.
文摘The exact calculation of point kinetic parameters is very important in nuclear reactor safety assessment, and most sophisticated safety codes such as RELAP5, PARCS,DYN3D, and PARET are using these parameters in their dynamic models. These parameters include effective delayed neutron fractions as well as mean generation time.These parameters are adjoint-weighted, and adjoint flux is employed as a weighting function in their evaluation.Adjoint flux calculation is an easy task for most of deterministic codes, but its evaluation is cumbersome for Monte Carlo codes. However, in recent years, some sophisticated techniques have been proposed for Monte Carlo-based point kinetic parameters calculation without any need of adjoint flux. The most straightforward scheme is known as the ‘‘prompt method'' and has been used widely in literature. The main objective of this article is dedicated to point kinetic parameters calculation in Tehran research reactor(TRR) using deterministic as well as probabilistic techniques. WIMS-D5B and CITATION codes have been used in deterministic calculation of forward and adjoint fluxes in the TRR core. On the other hand, the MCNP Monte Carlo code has been employed in the ‘‘prompt method''scheme for effective delayed neutron fraction evaluation.Deterministic results have been cross-checked with probabilistic ones and validated with SAR and experimental data. In comparison with experimental results, the relativedifferences of deterministic as well as probabilistic methods are 7.6 and 3.2%, respectively. These quantities are10.7 and 6.4%, respectively, in comparison with SAR report.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61272501,61272514,61170272,61472048,61402058,61121061,and 61411146001)the Program for New Century Excellent Talents in University of China(Grant No.NCET-13-0681)+4 种基金the National Development Foundation for Cryptological Research(Grant No.MMJJ201401012)the Fok Ying Tong Education Foundation(Grant No.131067)the Natural Science Foundation of Beijing(Grant Nos.4132056 and 4152038)the Postdoctoral Science Foundation of China(Grant No.2014M561826)the National Key Basic Research Program,China(Grant No.2012CB315905)
文摘This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel.
文摘The Various physical mechanisms governing river flow dynamics act on a wide range of temporal and spatial scales. This spatio-temporal variability has been believed to be influenced by a large number of variables. In the light of this, an attempt was made in this paper to examine whether the daily flow sequence of the Benue River exhibits low-dimensional chaos;that is, if or not its dynamics could be explained by a small number of effective degrees of freedom. To this end, nonlinear analysis of the flow sequence was done by evaluating the correlation dimension based on phase space reconstruction and maximal Lyapunov estimation as well as nonlinear prediction. Results obtained in all instances considered indicate that there is no discernible evidence to suggest that the daily flow sequence of the Benue River exhibit nonlinear deterministic chaotic signatures. Thus, it may be conjectured that the daily flow time series span a wide dynamical range between deterministic chaos and periodic signal contaminated with additive noise;that is, by either measurement or dynamical noise. However, contradictory results abound on the existence of low-dimensional chaos in daily streamflows. Hence, it is paramount to note that if the existence of low-dimension deterministic component is reliably verified, it is necessary to investigate its origin, dependence on the space-time behavior of precipitation and therefore on climate and role of the inflow-runoff mechanism.
基金supported by the National Natural Science Foundation of China (51006006,51136003,50976010,50976009)the National Basic Research Program of China (2012CB720205)+2 种基金the Aeronautical Science Foundation of China (2010ZB51)the 111 Project (B08009)the National Science Special Foundation for Post-doctoral Scientists of China (201104049)
文摘The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multi- stage compressors in steady state environment by introduc- ing deterministic correlations (DC) that need to be modeled to close the equation system. The primary purpose of this study is to provide insight into the DC characteristics and the influence of DC on the time-averaged flow field of the APES. In Part 1 of this two-part paper, firstly a 3D viscous unsteady and time-averaging flow CFD solver is developed to investi- gate the APES technique. Then steady and unsteady simu- lations are conducted in a transonic compressor stage. The results from both simulations are compared to highlight the significance of the unsteady interactions. Furthermore, the distribution characteristics of DC are studied and the DC at the rotor/stator interface are compared with their spatial cor- relations (SC). Lastly, steady and time-averaging (employing APES with DC) simulations for the downstream stator alone are conducted employing DC derived from the unsteady re- suits. The results from steady and time-averaging simula- tions are compared with the time-averaged unsteady results. The comparisons demonstrate that the simulation employing APES with DC can reproduce the time-averaged field and the 3D viscous time-averaging flow solver is validated.
文摘The results of an accident analysis for the loss of offsite power(LOOP)scenario in a reference Bushehr-1 VVER-1000/V446 nuclear power plant(NPP)are presented in this paper.This study attempted to provide a better analysis of LOOP accident management by integrating deterministic and probabilistic approaches.The RELAP5 code was used to investigate the occurrence of specific thermal–hydraulic phenomena.The probabilistic safety assessment of the LOOP accident is presented using the SAPHIRE software.LOOP accident data were extracted from the Bushehr NPP final safety analysis reports and probabilistic safety analysis reports.A deterministic approach was used to reduce the core damage frequency in the probabilistic analysis of LOOP accidents.The probabilistic approach was used to better observe the philosophy of defense in depth and safety margins in the deterministic analysis of the LOOP accident.The results show that the integration of the two approaches in LOOP accident investigations improved accident control.
文摘We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used as the quantum channel.Since these states are unchanged through the collective dephasing noisy channel,the effect of the channel noise can be perfectly overcome.Simultaneously,the security against some usual attacks canbe ensured by utilizing the various checking procedures.Furthermore,these two schemes are feasible with present-daytechnique.
基金supported by the Postgraduate Innovation Research Plan from Anhui University under Grant No.20073039
文摘We present a novel protocol for deterministic secure quantum communication by using the lour-qubit cluster state as quantum channel. It is shown that two legitimate users can directly transmit the secret messages based on Bellbasis measurements and classical communication. The present protocol makes use of the ideas of block transmission and decoy particle checking technique. It has a high capacity as each cluster state can carry two 5its of information, and has a high intrinsic efficieney 5ecause almost all the instances except the decoy checking particles (its numSer is negligible) are useful. Furthermore, this protocol is feasible with present-day technique.
基金Supported by the NSFC project (No. 60972011)the Research Fund for the Doctoral Program of Higher Education of China (No. 20100002110033)the open research fund of National Mobile Communications Research Laboratory of Southeast University (No. 2011D11)
文摘Compressed Sensing (CS) is an emerging technology in the field of signal processing, which can recover a sparse signal by taking very few samples and solving a linear programming problem. In this paper, we study the application of Low-Density Parity-Check (LDPC) Codes in CS. Firstly, we find a sufficient condition for a binary matrix to satisfy the Restricted Isometric Property (RIP). Then, by employing the LDPC codes based on Berlekamp-Justesen (B-J) codes, we construct two classes of binary structured matrices and show that these matrices satisfy RIP. Thus, the proposed matrices could be used as sensing matrices for CS. Finally, simulation results show that the performance of the proposed matrices can be comparable with the widely used random sensing matrices.
基金Project(2008BA00400)supported by the Foundation of Department of Science and Technology of Jiangxi Province,China
文摘A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters.
基金Project supported by the National Natural Science Foundation of China(Grant No.11604226)Science and Technology Program Foundation of the Beijing Municipal Commission of Education of China(Grants No.CIT&TCD201904080).
文摘We present a deterministic nondestructive hyperentangled Bell state analysis protocol for photons entangled in three degrees of freedom(DOFs),including polarization,spatial-mode,and time-bin DOFs.The polarization Bell state analyzer and spatial-mode Bell state analyzer are constructed by polarization parity-check quantum nondemolition detector(P-QND)and spatial-mode parity-check quantum nondemolition detector(S-QND)using cross-Kerr nonlinearity,respectively.The time-bin Bell state analyzer is constructed by the swap gate for polarization state and time-bin state of a photon(P-T swap gate)and P-QND.The Bell states analyzer for one DOF will not destruct the Bell states of other two DOFs,so the polarization-spatial-time-bin hyperentangled Bell states can be determinately distinguished without destruction.This deterministic nondestructive state analysis method has useful applications in quantum information protocols.