期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research of detonation products of RDX/Al from the perspective of composition 被引量:1
1
作者 Xing-han Li Zhi-cong Yi +6 位作者 Qi-jun Liu Fu-sheng Liu Ze-teng Zhang Shen-yuan Hou Xian-xu Zheng Xu Zhang Hong-bo Pei 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期31-45,共15页
Aluminized explosives exhibit excellent performance because the oxidation of aluminum(Al)powders enhances the pressure and temperature of detonation products.However,the equation of state(EOS)of detonation products ha... Aluminized explosives exhibit excellent performance because the oxidation of aluminum(Al)powders enhances the pressure and temperature of detonation products.However,the equation of state(EOS)of detonation products has not been understood well.In the present study,we conducted long-time tests(approximately 1 ms)of a metal rod driven by detonation products of RDX,RDX/Li F,and RDX/Al.In addition,we used laser velocimetry(PDV)to measure the freesurface velocity of the rod.Thermochemical code DLCHEQ was successfully applied to the hydrodynamic program SSS to perform the roddriven test,and a novel method was established to study the EOS of detonation products from the perspective of composition.The reliability of DLCEHQ was validated by a small deviation(<10%)between the experimental rod free-surface velocity of RDX and the calculated results;the deviation was considerably less than that from the results obtained using the JWL EOS and ideal-gas EOS.The endothermic process and the reaction of Al powders(Al+H_(2)O+NO+CO_(2)→CO+H_(2)+N_(2)+Al_(2)O_(3))were analyzed by calculating the rod free-surface velocity of RDX/Li F and RDX/Al,respectively.The results of the present study demonstrated that the thermodynamic state of Al powders has notable influence on the EOS of aluminized detonation products,and the findings were compared with those of previous studies.First,the temperature equilibrium between Al powders and CHNO products is not always achieved,and the disequilibrium is more obvious when the reaction of Al powders is stronger.Second,the reaction rate of Al powders depends on pressure and Al content.Finally,the endothermic process of Al powders has a high contribution to the decrease in the work ability of RDX/Al instead of the gasconsumption mechanism of the Al reaction.More than half of the reaction heat of Al powders is used to heat itself,whereas the gas consumption during the reaction is negligible. 展开更多
关键词 Aluminized explosive detonation products EOS Rod-driven test Compositional evolution
下载PDF
Effect of high-pressure detonation products on fuel injection and propagation characteristics of detonation wave
2
作者 Gaoyang Ge Li Deng +3 位作者 Hu Ma Zhenjuan Xia Xiao Liu Changsheng Zhou 《Propulsion and Power Research》 SCIE 2022年第1期58-73,共16页
The effect of high-pressure detonation products on fuel injection and propagation characteristics of detonation wave has been investigated in the form of ion voltage by varying the equivalence ratio(ER),air mass flux,... The effect of high-pressure detonation products on fuel injection and propagation characteristics of detonation wave has been investigated in the form of ion voltage by varying the equivalence ratio(ER),air mass flux,and operation duration with hydrogen-air mixtures.It has been shown experimentally that the ion voltage decays gradually during the initial stage of rotating detonation wave(RDW).The attenuation of ion voltage is a general phenomenon,and the decay rate of ion voltage and its peak value of the trough state are related to the equivalence ratio and air mass flux.The analysis of interaction between the combustor and hydrogen plenum indicates that the feedback of high-pressure detonation products leads to the attenuation of ion voltage.In addition,the long-duration tests show that the ion voltage will recover to a steady state with the extension of reaction time,when the purgation(products leaving plenums)of detonation products is greater than feedback(products entering plenums)of detonation products in the hydrogen plenum.The recovery of ion voltage starts earlier at the higher equivalence ratio and air mass flux,and the peak value of ion voltage in the steady state also increases with the increase of equivalence ratio and air mass flux.A low frequency oscillation about 10 e12 Hz occurs in the RDW at some operation conditions.This low frequency oscillation is related to the interaction between the combustor and hydrogen plenum,and can be eliminated by either increasing the equivalence ratio or decreasing the air mass flux. 展开更多
关键词 High-pressure detonation products Ion voltage FEEDBACK PURGATION Long-duration test Low frequency oscillation
原文传递
A quasi-isentropic model of a cylinder driven by aluminized explosives based on characteristic line analysis
3
作者 Hong-fu Wang Yan Liu +3 位作者 Fan Bai Jun-bo Yan Xu Li Feng-lei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第11期1979-1999,共21页
A quasi-isentropic study on the process of driving a cylinder with aluminized explosives was carried out to examine the influence of the aluminum(Al) reaction rate on cylinder expansion and the physical parameters of ... A quasi-isentropic study on the process of driving a cylinder with aluminized explosives was carried out to examine the influence of the aluminum(Al) reaction rate on cylinder expansion and the physical parameters of the detonation products. Based on the proposed quasi-isentropic hypothesis and relevant isentropic theories, the characteristic lines of aluminized explosives driving a cylinder were analyzed,and a quasi-isentropic model was established. This model includes the variation of the cylinder wall velocity and the physical parameters of the detonation products with the Al reaction degree. Using previously reported experimental results, the quasi-isentropic model was verified to be applicative and accurate. This model was used to calculate the physical parameters for cylinder experiments with aluminized cyclotrimethylenetrinitramine explosives with 15.0 % and 30.0 % Al content. The results show that this quasi-isentropic model can be used not only to calculate the cylinder expansion rule or Al reaction degree, but also to calculate the physical parameters of the detonation products in the process of cylinder expansion. For explosives with 15.0 % and 30.0 % Al, 24.3 % and 18.5 % of the Al was found to have reacted at 33.9 μs and 34.0 μs, respectively. The difference in Al content results in different reaction intensity, occurrence time, and duration of two forms of reaction(diffusion and kinetic) between the Al powder and the detonation products;the post-detonation burning reaction between the Al powder and the detonation products prolongs the positive pressure action time, resulting in a continuous rise in temperature after detonation. 展开更多
关键词 Aluminized explosives Cylinder experiments Quasi-isentropic model Characteristic line analysis Reaction degree of Al powder Physical parameters of detonation products
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部