期刊文献+
共找到249篇文章
< 1 2 13 >
每页显示 20 50 100
Atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction
1
作者 Ding-Han Zhu Xiong Zhang +3 位作者 Xiao-Qiang Li Peng Li Yan-Bin Wang Shuang Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期40-52,共13页
In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detect... In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects. 展开更多
关键词 High-altitude nuclear detonation Atmospheric transmission Pulsed X-rays Scattering correction Analytical method Monte Carlo method
下载PDF
High-Order Bound-Preserving Finite Difference Methods for Multispecies and Multireaction Detonations 被引量:1
2
作者 Jie Du Yang Yang 《Communications on Applied Mathematics and Computation》 2023年第1期31-63,共33页
In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical ... In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical reaction,say zi,is between 0 and 1,withΣz_(i)=1.Due to the lack of maximum-principle,most of the previous bound-preserving technique cannot be applied directly.To preserve those bounds,we will use the positivity-preserving technique to all the zi'is and enforceΣz_(i)=1 by constructing conservative schemes,thanks to conservative time integrations and consistent numerical fluxes in the system.Moreover,detonation is an extreme singular mode of flame propagation in premixed gas,and the model contains a significant stiff source.It is well known that for hyperbolic equations with stiff source,the transition points in the numerical approximations near the shocks may trigger spurious shock speed,leading to wrong shock position.Intuitively,the high-order weighted essentially non-oscillatory(WENO)scheme,which can suppress oscillations near the discontinuities,would be a good choice for spatial discretization.However,with the nonlinear weights,the numerical fluxes are no longer“consistent”,leading to nonconservative numerical schemes and the bound-preserving technique does not work.Numerical experiments demonstrate that,without further numerical techniques such as subcell resolutions,the conservative FD method with linear weights can yield better numerical approximations than the nonconservative WENO scheme. 展开更多
关键词 Weighted essentially non-oscillatory scheme Finite difference method Stiff source detonations Bound-preserving CONSERVATIVE
下载PDF
Numerical Investigation on the Propagation Mechanism of Steady Cellular Detonations in Curved Channels 被引量:3
3
作者 李健 宁建国 +2 位作者 赵慧 郝莉 王成 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第4期144-147,共4页
The propagation mechanism of steady cellular detonations in curved channels is investigated numerically with a detailed chemical reaction mechanism, The numerical results demonstrate that as the radius of the curvatur... The propagation mechanism of steady cellular detonations in curved channels is investigated numerically with a detailed chemical reaction mechanism, The numerical results demonstrate that as the radius of the curvature decreases, detonation fails near the inner wall due to the strong expansion effect. As the radius of the curvature increases, the detonation front near the inner wall can sustain an underdriven detonation. In the case where deto- nation fails, a transverse detonation downstream forms and re-initiates the quenched detonation as it propagates toward the inner wall. Two kinds of propagation modes exist as the detonation is propagating in the curved channel. One is that the detonation fails first, and then a following transverse detonation initiates the quenched detonation and this process repeats itself. The other one is that without detonation failure and re-initiation, a steady detonation exists which consists of an underdriven detonation front near the inner wall subject to the diffraction and an overdriven detonation near the outer wall subject to the compression. 展开更多
关键词 Numerical Investigation on the Propagation Mechanism of Steady Cellular detonations in Curved Channels
下载PDF
Effect of Cellular Instability on the Initiation of Cylindrical Detonations
4
作者 韩文虎 黄金 +3 位作者 杜宁 刘再刚 孔文俊 王成 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期76-79,共4页
The direct initiation of detonations in one-dimensional (1D) and two-dimensional (2D) cylindrical geometries is investigated through numerical simulations. In comparison of 1D and 2D simulations, it is found that ... The direct initiation of detonations in one-dimensional (1D) and two-dimensional (2D) cylindrical geometries is investigated through numerical simulations. In comparison of 1D and 2D simulations, it is found that cellular instability has a negative effect on the 2D initiation and makes it more difficult to initiate a sustaining 2D cylindrical detonation. This effect associates closely with the activation energy. For the lower activation energy, the 2D initiation of cylindrical detonations can be achieved through a subcritical initiation way. With increasing the activation energy, the 2D cylindrical detonation has increased difficulty in its initiation due to the presence of unreacted pockets behind the detonation front and usually requires rather larger source energy. 展开更多
关键词 Effect of Cellular Instability on the Initiation of Cylindrical detonations
下载PDF
A review of direct numerical simulations of astrophysical detonations and their implications 被引量:2
5
作者 Suzanne T. Parete-Koon Christopher R. Smith +1 位作者 Thomas L. Papatheodore O. E. Bronson Messer 《Frontiers of physics》 SCIE CSCD 2013年第2期189-198,共10页
Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse ins... Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerable effort has been expended modeling Type Ia supernovae at densities above 1 ~ 107 g.cm-3 where the complexities of turbulent burning dominate the flame propagation. How- ever, most full star models turn the nuclear burning schemes off when the density falls below 1 ~ 107 g.cm-3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. This work will review the status of DNS studies of detona- tions and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (C J) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics. 展开更多
关键词 SUPERNOVA detonations direct numerical simulations
原文传递
Reheat effect on the improvement in efficiency of the turbine driven by pulse detonation
6
作者 Junyu Liu Zhiwu Wang +3 位作者 Zixu Zhang Junlin Li Weifeng Qin Jingjing Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期200-210,共11页
Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are di... Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine. 展开更多
关键词 Pulse detonation turbine engine Hydrogen detonation Turbine efficiency Reheat effect Multi-cycle detonation
下载PDF
Investigation of system parameters towards safer impact based shock-to-detonation transition in a novel laser driven flyer plate prototype
7
作者 Gonca Saglam Ozkasapoglu Selis Onel 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期103-113,共11页
Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This s... Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This study is based on developing a safer laser driven flyer plate prototype comprised of a laser initiator and a flyer plate subsystem that can be used with secondary explosives.System parameters were optimized to initiate the shock-to-detonation transition(SDT)of a secondary explosive based on the impact created by the flyer plate on the explosive surface.Rupture of the flyer was investigated at the mechanically weakened region located on the interface of these subsystems,where the product gases from the deflagration of the explosive provide the required energy.A bilayer energetic material was used,where the first layer consisted of a pyrotechnic component,zirconium potassium perchlorate(ZPP),for sustaining the ignition by the laser beam and the second layer consisted of an insensitive explosive,cyclotetramethylene-tetranitramine(HMX),for deflagration.A plexiglass interface was used to enfold the energetic material.The focal length of the laser beam from the diode was optimized to provide a homogeneous beam profile with maximum power at the surface of the ZPP.Closed bomb experiments were conducted in an internal volume of 10 cm^(3) for evaluation of performance.Dependency of the laser driven flyer plate system output on confinement,explosive density,and laser beam power were analyzed.Measurements using a high-speed camera resulted in a flyer velocity of 670±20 m/s that renders the prototype suitable as a laser detonator in applications,where controlled employment of explosives is critical. 展开更多
关键词 Laser driven flyer plate Shock to detonation transition DETONATION Secondary explosives Pyrotechnic materials CONFINEMENT
下载PDF
Study on concentration distribution and detonation characteristics for non-axisymmetric fuel dispersal
8
作者 Linghui Zeng Zhongqi Wang +1 位作者 Xing Chen Jianping Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期484-495,共12页
The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation f... The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation fields of 85 kg cylindrical and fan-shaped fuel are investigated by experiments and numerical simulations.A dynamic model of the whole process for fuel dispersal and detonation is built.The concentration distribution of fuel is used as the initial condition to calculate the detonation stage,thus solving the initial value problem of detonation field.The phase and component changes of fuel cloud at different locations are compared.The fuel cloud is divided into directions of 0°,90°,135°and 180°.The results show that the maximum cloud radius is 20.94 m in 135°and the minimum is 12.04 m in 0°.The diameter of the detonation fireball is 53.6 m,and the peak temperature is 3455 K.The highest peak overpressure is 3.44 MPa in 0°and the lowest is 2.97 MPa in 135°.The proportion of liquid phase in 0°is22.90%,and the fuel loss is 11.8% and 9% higher than that in 135°and cylindrical charge,respectively.The stable propagation distance of blast wave in 135°is 42.50% longer than 0°and 28.37% longer than cylindrical charge. 展开更多
关键词 Fuel dispersal Concentration distribution Detonation characteristic Fuel loss Numerical simulation
下载PDF
Energy and blast performance of beryllium in a model thermobaric composition in comparison with aluminum and magnesium
9
作者 Thomas M.Klapotke Stanisław Cudziło +1 位作者 Waldemar A.Trzcinski Jozef Paszula 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期13-19,共7页
A direct comparison is made between the effectiveness of Al,Mg,and Be powders as additional fuels in model thermobaric compositions containing 20%fuel,20%ammonium perchlorate,and 60%RDX(1,3,5-Trinitro-1,3,5-triazacycl... A direct comparison is made between the effectiveness of Al,Mg,and Be powders as additional fuels in model thermobaric compositions containing 20%fuel,20%ammonium perchlorate,and 60%RDX(1,3,5-Trinitro-1,3,5-triazacyclohexane)passivated with wax.Experimentally determined calorimetric measurements of the heat of detonation,along with the overpressure histories in an explosion chamber filled with nitrogen,were used to determine the quasi-static pressure(QSP)under anaerobic conditions.Overpressure measurements were also performed in a semi-closed bunker,and all blast wave parameters generated after the detonation of 500 g charges of the tested explosives were determined.Detonation calorimetry results,QSP values,and blast wave parameters(pressure amplitude,specific and total impulses)clearly indicate that Be is much more effective as an additional fuel than either Al or Mg in both anaerobic post-detonation reactions as well as the subsequent aerobic combustion.The heat of detonation of the RDXwax/AP/Be explosive mixture is over 40%and 50%higher than that of the mixture containing aluminum and magnesium instead of beryllium,respectively.Moreover,the TNT equivalent of the Be-containing composition due to the overpressure in the nitrogen-filled explosion chamber is 1.66,while the equivalent calculated using an air shock wave-specific impulse at a distance of 2.5 m is equal to 1.69.The high values of these parameters confirm the high reactivity of beryllium in both the anaerobic and aerobic stages of the thermobaric explosion. 展开更多
关键词 Thermobaric explosives BERYLLIUM Heat of detonation Quasi-static overpressure Blast wave parameters
下载PDF
Assessing the energy release characteristics during the middle detonation reaction stage of aluminized explosives
10
作者 Kun Yang Lang Chen +3 位作者 Danyang Liu Bin Zhang Jianying Lu Junying Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期270-277,共8页
Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows sig... Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows significant differences.However,at present,there are few effective methods for evaluating the energy release characteristics of the middle reaction stage of such explosives,which can have a duration of tens to hundreds of microseconds.The present work demonstrates an approach to assessing the midstage of an aluminized explosive detonation based on a water push test employing a high degree of confinement.In this method,the explosive is contained in a steel cylinder having one end closed that is installed at the bottom of a transparent water tank.Upon detonation,the gaseous products expand in one direction while forcing water ahead of them.The resulting underwater shock wave and the interface between the gas phase products and the water are tracked using an ultra-high-speed framing and streak camera.The shock wave velocity in water and the expansion work performed by the gaseous detonation products were calculated to assess the energy release characteristics of aluminized explosives such as CL-20 and RDX in the middle stage of the detonation reaction.During the middle stage of the detonation process of these aluminized explosives,the aluminum reaction reduced the attenuation of shock waves and increased the work performed by gas phase products.A higher aluminum content increased the energy output while the presence of oxidants slowed the energy release rate.This work demonstrates an effective means of evaluating the performance of aluminized explosives. 展开更多
关键词 Aluminized explosive Non-ideal detonation Water push test Energy release
下载PDF
Applicability limits of the DAX test in plastic bonded explosives
11
作者 Martin Künzel Jindrich Kucera Jiri Pachman 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期64-70,共7页
The Disc Acceleration e Xperiment(DAX)is one of the most recent experimental methods of performance characterization of new energetic materials.A cylindrical explosive charge accelerates a thin metallic disc and its v... The Disc Acceleration e Xperiment(DAX)is one of the most recent experimental methods of performance characterization of new energetic materials.A cylindrical explosive charge accelerates a thin metallic disc and its velocity is measured continuously using photonic Doppler velocimetry.The detonation velocity is measured simultaneously.The DAX test can be used to obtain the Chapman-Jouguet(CJ)detonation pressure and to describe detonation products expansion using reduced amount of explosive.A series of DAX tests was performed at various charge diameters and disc thicknesses with Semtex 1 A plastic bonded explosive and sensitized nitromethane.The DAX-like evaluation was also applied to previously measured data of Semtex 1A and A-IX-1 explosives.The optimum disc thickness is determined by the disc to explosive mass ratio of 0.01-0.08.The repeatability of the Semtex 1 A detonation pressure results is about four times lower compared to the pressed and liquid explosives. 展开更多
关键词 Flyer plate Detonation pressure Photonic Doppler velocimetry Semtex
下载PDF
Revisiting the theoretical prediction of the explosive performance found by the Trauzl test
12
作者 Ivana Dobrilovic Mario Dobrilovic Muhamed Suceska 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期163-174,共12页
The Trauzl lead block test allows the determination of the approximate performance of explosives in blasting applications by measuring the volume increase(expansion)that is produced by the detonation of an explosive c... The Trauzl lead block test allows the determination of the approximate performance of explosives in blasting applications by measuring the volume increase(expansion)that is produced by the detonation of an explosive charge in the cavity of a lead block.In this paper,we reconsider the possibility of interpreting the Trauzl test results in terms of detonation parameters or quantities.The detonation parameters used in the analysis are calculated using the thermochemical code EXPLO5,while the hydrocode AUTODYN is used to simulate the effect of explosive charge density and reaction rate on the results of the Trauzl test.The increase in the volume of the lead block cavity was found to correlate best with the product of the detonation heat and the root of the volume of detonation products.Hydrocode simulation showed that the density of explosive charge and the rate of explosive decomposition affect the dynamics of the interaction of the detonation product and the lead block,and consequently the lead block cavity volume increase. 展开更多
关键词 Trauzl lead block test Performance of explosives EXPLO5 AUTODYN Detonation heat
下载PDF
Study on cell size variation in overdriven gaseous detonations
13
作者 Huilan Ren Tianyu Jing Jian Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第6期938-953,I0001,共17页
The cell size variation in overdriven gaseous detonations is studied in hydrogen/oxygen and acetylene/oxygen mixtures.The local self-similarity of Mach reflection of detonations on the wedge in the far field renders t... The cell size variation in overdriven gaseous detonations is studied in hydrogen/oxygen and acetylene/oxygen mixtures.The local self-similarity of Mach reflection of detonations on the wedge in the far field renders the presence of a steady overdriven Mach stem to be possible.The study focuses on the cell size change of overdriven Mach stem on the wedge surface other than on the sidewall.The detonation cell pattern on the wedge surface has a complicated process of three-stage pattern,i.e.,the cells decreasing from large to small size,and then increasing asymptotically to a medium size and keeping constant.The cell size ratio with increasing the degree of overdrive is also examined.It is found that the ratio decays as the degree of overdrive increases.However,as the wedge angle increases to a critical value,finer cells are not created on the smoke foils.Ng’s model used to predict the cell size is also found to be valid only for detonations with relative large instability parameters,but presents large errors for highly overdriven detonations with low instability.A modification to Ng’s model is proposed based on the experimental results. 展开更多
关键词 Cellular detonations Overdriven factor Mach reflection Cell size
原文传递
Reconstructing shock front of unstable detonations based on multi-layer perceptron
14
作者 Lin Zhou Honghui Teng +2 位作者 Hoi Dick Ng Pengfei Yang Zonglin Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第11期1610-1623,I0001,共15页
The dynamics of frontal and transverse shocks in gaseous detonation waves is a complex phenomenon bringing many difficulties to both numerical and experimental research.Advanced laser-optical visualization of detonati... The dynamics of frontal and transverse shocks in gaseous detonation waves is a complex phenomenon bringing many difficulties to both numerical and experimental research.Advanced laser-optical visualization of detonation structure may provide certain information of its reactive front,but the corresponding lead shock needs to be reconstructed building the complete flow field.Using the multi-layer perceptron(MLP)approach,we propose a shock front reconstruction method which can predict evolution of the lead shock wavefront from the state of the reactive front.The method is verified through the numerical results of one-and two-dimensional unstable detonations based on the reactive Euler equations with a one-step irreversible chemical reaction model.Results show that the accuracy of the proposed method depends on the activation energy of the reactive mixture,which influences prominently the cellular detonation instability and hence,the distortion of the lead shock surface.To select the input variables for training and evaluate their influence on the effectiveness of the proposed method,five groups,one with six variables,and the other with four variables,are tested and analyzed in the MLP model.The trained MLP is tested in the cases with different activation energies,demonstrates the inspiring generalization capability.This paper offers a universal framework for predicting detonation frontal evolution and provides a novel way to interpret numerical and experimental results of detonation waves. 展开更多
关键词 Cellular detonation Lead shock evolution Multi-layer perceptron Numerical simulations
原文传递
Modeling the blast load induced by a close-in explosion considering cylindrical charge parameters 被引量:2
15
作者 Yi Fan Li Chen +2 位作者 Zhan Li Heng-bo Xiang Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期83-108,共26页
Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field exper... Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field experiments and a systematic numerical analysis were conducted.A high-fidelity finite element model developed using AUTODYN was first validated using blast data collected from field tests conducted in this and previous studies.A quantitative analysis was then performed to determine the influence of the charge shape,aspect ratio(length to diameter),orientation,and detonation configuration on the characteristics and distributions of the blast loading(incident peak overpressure and impulse)according to scaled distance.The results revealed that the secondary peak overpressure generated by a cylindrical charge was mainly distributed along the axial direction and was smaller than the overpressure generated by an equivalent spherical charge.The effects of charge shape on the blast loading at 45°and 67.5°in the axial plane could be neglected at scaled distances greater than 2 m/kg^(1/3);the effect of aspect ratios greater than 2 on the peak overpressure in the 90°(radial)direction could be neglected at all scaled distances;and double-end detonation increased the radial blast loading by up to 60%compared to singleend detonation.Finally,an empirical cylindrical charge blast loading model was developed considering the influences of charge aspect ratio,orientation,and detonation configuration.The results obtained in this study can serve as a reference for the design of blast tests using cylindrical charges and aid engineers in the design of blast-resistant structures. 展开更多
关键词 Cylindrical charge Secondary peak overpressure Aspect ratio ORIENTATION Detonation initiation point Blast loading model
下载PDF
Deflagration to detonation transition in weakly confined conditions for a type of potentially novel green primary explosive:Al/Fe_(2)O_(3)/RDX hybrid nanocomposites 被引量:2
16
作者 Qing-ping Luo Xin-ping Long +2 位作者 Fu-de Nie Gui-xiang Liu Chao Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期28-36,共9页
The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined condit... The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined conditions,and the interaction of Al/Fe_(2)O_(3)nanothermite and RDX in the DDT process was studied in detail.Results show that the amount of the Al/Fe_(2)O_(3)nanothermite has a great effect on the DDT properties of Al/Fe_(2)O_(3)/RDX nanocomposites.The addition of Al/Fe_(2)O_(3)nanothermite to RDX apparently improves the firing properties of RDX.A small amount of Al/Fe_(2)O_(3)nanothermite greatly increases the initial combustion velocity of Al/Fe_(2)O_(3)/RDX nanocomposites,accelerating their DDT process.When the contents of Al/Fe_(2)O_(3)nanothermite are less than 20 wt%,the DDT mechanisms of Al/Fe_(2)O_(3)/RDX nanocomposites follow the distinct abrupt mode,and are consistent with that of RDX,though their DDT processes are different.The RDX added into the Al/Fe_(2)O_(3)nanothermite increases the latter's peak combustion velocity and makes it generate the DDT when the RDX content is at least 10 wt%.RDX plays a key role in the shock compressive combustion,the formation and the properties of the DDT in the flame propagation of nanocomposites.Compared with RDX,the fast DDT of Al/Fe_(2)O_(3)/RDX nanocomposites could be obtained by adjusting the chemical constituents of nanocomposites. 展开更多
关键词 Green primary explosives Al/Fe_(2)O_(3)/RDX nanocomposites Deflagration to detonation transition Mechanism
下载PDF
Estimating energy release performance of oxidizer-activated aluminum fuel particles under ultrafast stimulus 被引量:1
17
作者 Ya-ru Li Hui Ren +2 位作者 Xin-zhou Wu Hui-xin Wang Xi-long Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期92-99,共8页
Aluminum(Al) particles are good fuel additives to improve the energy output performances of explosives. Under detonation environment, reaction delay of Al particles plays a key role in the energy release efficiency. U... Aluminum(Al) particles are good fuel additives to improve the energy output performances of explosives. Under detonation environment, reaction delay of Al particles plays a key role in the energy release efficiency. Up to date, reaction delay of Al particles is still limited by the efficiency of mass and heat transfer from oxidizers to Al particles. To address this issue, a homogeneous fuel-oxidizer assembly has recently become a promising strategy. In this work, oxidizer-activated Al fuel particles(ALG) were prepared with glycidyl azide polymer(GAP) as the oxidizer. The ALG was in uniform spherical shape and core-shell structure with shell layer of around 5 nm which was observed by scanning electron microscope and transmission electron microscope. The localized nanoscale mid-IR measurement detected the uniform distribution of characteristic absorption bond of GAP in the shell layer which confirmed the homogenous fuel-oxidizer structure of ALG. A thermal gravimetric analysis of ALG at ultrafast heating rate of 1000℃/min under argon atmosphere was conducted. The decomposition of GAP finished much earlier than that of GAP at heating rate of 10℃/min. Under ultrafast high laser fluence, the reaction response of ALG was characterized and compared with that of micro-sized Al(μAl). With the increase of laser energy, the propagation distance of the shock wave increased. However, the velocity histories were nearly the same when energies were lower than 299 mJ or higher than 706 mJ. The propagation distance of the shock wave for ALG was 0.5 mm larger than that for μAl at 2.1 μs. The underwater explosion showed the peak pressure and the shock wave energy of the ALG-based explosive were both higher than those of the μAl-based explosive at 2.5 m. This study shows the feasibility to improve the energy release of Al-based explosives via using the oxidizer-activated Al fuel particles with energetic polymer as the oxidizer. 展开更多
关键词 ALUMINUM Glycidyl azide polymer Laser DETONATION EXPLOSIVE Ultrafast stimulus
下载PDF
Research of detonation products of RDX/Al from the perspective of composition 被引量:1
18
作者 Xing-han Li Zhi-cong Yi +6 位作者 Qi-jun Liu Fu-sheng Liu Ze-teng Zhang Shen-yuan Hou Xian-xu Zheng Xu Zhang Hong-bo Pei 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期31-45,共15页
Aluminized explosives exhibit excellent performance because the oxidation of aluminum(Al)powders enhances the pressure and temperature of detonation products.However,the equation of state(EOS)of detonation products ha... Aluminized explosives exhibit excellent performance because the oxidation of aluminum(Al)powders enhances the pressure and temperature of detonation products.However,the equation of state(EOS)of detonation products has not been understood well.In the present study,we conducted long-time tests(approximately 1 ms)of a metal rod driven by detonation products of RDX,RDX/Li F,and RDX/Al.In addition,we used laser velocimetry(PDV)to measure the freesurface velocity of the rod.Thermochemical code DLCHEQ was successfully applied to the hydrodynamic program SSS to perform the roddriven test,and a novel method was established to study the EOS of detonation products from the perspective of composition.The reliability of DLCEHQ was validated by a small deviation(<10%)between the experimental rod free-surface velocity of RDX and the calculated results;the deviation was considerably less than that from the results obtained using the JWL EOS and ideal-gas EOS.The endothermic process and the reaction of Al powders(Al+H_(2)O+NO+CO_(2)→CO+H_(2)+N_(2)+Al_(2)O_(3))were analyzed by calculating the rod free-surface velocity of RDX/Li F and RDX/Al,respectively.The results of the present study demonstrated that the thermodynamic state of Al powders has notable influence on the EOS of aluminized detonation products,and the findings were compared with those of previous studies.First,the temperature equilibrium between Al powders and CHNO products is not always achieved,and the disequilibrium is more obvious when the reaction of Al powders is stronger.Second,the reaction rate of Al powders depends on pressure and Al content.Finally,the endothermic process of Al powders has a high contribution to the decrease in the work ability of RDX/Al instead of the gasconsumption mechanism of the Al reaction.More than half of the reaction heat of Al powders is used to heat itself,whereas the gas consumption during the reaction is negligible. 展开更多
关键词 Aluminized explosive Detonation products EOS Rod-driven test Compositional evolution
下载PDF
Dynamic analysis of buried pipeline with and without barrier system subjected to underground detonation
19
作者 Chaidul Haque Chaudhuri Deepankar Choudhury 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期95-105,共11页
Failure of pipe networks due to blast loads resulting from terrorist attacks or construction facilities, may cause economic loss, environmental pollution, source of firing or even it may lead to a disaster. The presen... Failure of pipe networks due to blast loads resulting from terrorist attacks or construction facilities, may cause economic loss, environmental pollution, source of firing or even it may lead to a disaster. The present work develops a closed-form solution of buried pipe with barrier system subjected to subsurface detonation. The solution is derived based on the concept of double-beam system. Euler Bernoulli's beams are used to simulate the buried pipe and the barrier system. Soil is idealized as viscoelastic foundation along with shear interaction between discrete Winkler springs(advanced soil model). The finite SineFourier transform is employed to solve the coupled partial differential equations. The solution is validated with past studies. A parametric study is conducted to investigate the influence of TNT charge weight, pipe material, damping ratio and TNT offset on the response of buried pipe with and without barrier system. Further a statistical analysis is carried out to get the significant soil and pipe input parameters. It is perceived that peak pipe displacements for both the cases(with and without barrier) are increases with increasing the weight of TNT charge and decreases with increasing the damping ratio and TNT offset. The deformation of pipe also varies with pipe material. Pipe safety against blast loads can be ensured by providing suitable barrier layer. The present study can be utilized in preliminary design stage as an alternative to expensive numerical analysis or field study. 展开更多
关键词 Buried pipeline Subsurface detonation Analytical solution Viscoelastic foundation Protective barrier
下载PDF
Theoretical and numerical simulation investigation of deep hole dispersed charge cut blasting
20
作者 Chengxiao Li Renshu Yang +3 位作者 Yanbing Wang Yiqiang Kang Yuantong Zhang Pin Xie 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期87-107,共21页
Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production ... Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production efciency,the traditional blasting design is no longer suitable for deep hole blasting.In this paper,a disperse charge cut blasting method was proposed to address the issues of low excavation depth and high block rate in deep hole undercut blasting.First,a blasting model was used to illustrate the mechanism of the deep hole dispersive charge cut blasting process.Then,continuous charge and dispersed charge blasting models were developed using the smooth particle hydrodynamics-fnite element method(SPHFEM).The cutting parameters were determined theoretically,and the cutting efciency was introduced to evaluate the cutting efect.The blasting efects of the two charging models were analyzed utilizing the evolution law of rock damage,the number of rock particles thrown,and the cutting efciency.The results show that using a dispersed charge improves the cutting efciency by about 20%and the rock breakage for the deep hole cut blasting compared to the traditional continuous charge.In addition,important parameters such as cutting hole spacing,cutting hole depth and upper charge proportion also have a signifcant impact on the cutting efect.Finally,the deep hole dispersed charge cut blasting technology is combined with the digital electronic detonator through the feld engineering practice.It provides a reference for the subsequent deep hole cutting blasting and the use of electronic detonators in rock roadways. 展开更多
关键词 Deep hole blasting Cut blasting Dispersed charge SPH-FEM Digital electronic detonator
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部