期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Provenance and drainage system of the Early Cretaceous volcanic detritus in the Himalaya as constrained by detrital zircon geochronology 被引量:4
1
作者 Xiu-Mian Hu Eduardo Garzanti Wei An 《Journal of Palaeogeography》 SCIE CSCD 2015年第1期85-98,共14页
The age range of the major intra-plate volcanic event that affected the northern Indian margin in the Early Cretaceous is here defined precisely by detrital zircon geochronology. U-Pb ages of Early Cretaceous detrital... The age range of the major intra-plate volcanic event that affected the northern Indian margin in the Early Cretaceous is here defined precisely by detrital zircon geochronology. U-Pb ages of Early Cretaceous detrital zircons found in the Cretaceous to the Paleocene sandstones cluster mainly between 142 Ma and 123 Ma in the northern Tethys Himalayan unit, and between 140 Ma and 116 Ma in the southern Tethys Himalayan unit. The youngest and oldest detrital zircons within this group indicate that volcanism in the source areas started in the latest Jurassic and ended by the early Albian. Stratigraphic data indicate that volcaniclastic sedimentation began significantly earlier in southern Tibet (Tithonian) than in Nepal (Valangin- ian), and considerably later in Spiti and Zanskar (Aptian/AIbian) to the west. This apparent westward migration of magmatism was explained with progressive westward propagation of extensional/transtensional tectonic activity and development of fractures cutting deeply across the Indian continental margin crust. However, detrital zircon geochronology provides no indication of heterochroneity in magmatic activity in the source areas from east to west, and thus lends little support to such a scenario. Westward migration of volcaniclastic sedimentation may thus reflect instead the westward progradation of major drainage systems supplying volcanic detritus sourced from the same volcanic centers in the east. Development of multiple radial drainage away from the domal surface uplift associated with magmatic upwelling, as observed for most large igneous provinces around the world, may also explain why U-Pb ages of detrital zircons tend to cluster around 133-132 Ma (the age of the Cornel igneous province) in Tethys Himalayan units, but around 118-117 Ma (the age of the Rajmahal igneous province) in Lesser Himalayan units. 展开更多
关键词 northern Indian margin Cretaceous Himalayan Orogen volcaniclastic detri-tus drainage system zircon geochronology PALAEOGEOGRAPHY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部