Anaerobic oxidation of methane(AOM) is an important biogeochemical process, which has important scientific significance for global climate change and atmospheric evolution. This research examined the δ^(34)S, terrige...Anaerobic oxidation of methane(AOM) is an important biogeochemical process, which has important scientific significance for global climate change and atmospheric evolution. This research examined the δ^(34)S, terrigenous clastic indices of TiO_(2) and Al_(2)O_(3), and times for formation of the Ba front at site SH1, site SH3 and site 973-4 in the South China Sea. Three different coupling mechanisms of deposition rate and methane flux were discovered. The different coupling mechanisms had different effects on the role of AOM. At site 973-4, a high deposition rate caused a rapid vertical downward migration of the sulphate–methane transition zone(SMTZ), and the higher input resulted in mineral dissolution. At site SH3, the deposition rate and methane flux were basically in balance,so the SMTZ and paleo-SMTZ were the most stable of any site, and these were in a slow process of migration. At site SH1, the methane flux dominated the coupled mode, so the movement of the SMTZ at site SH1 was consistent with the general understanding. Understanding the factors influencing the SMTZ is important for understanding the early diagenesis process.展开更多
基金The Guangdong Basic and Applied Basic Research Fund Project under contract No.2021A1515011509the Municipal Science and Technology Program of Guangzhou under contract No.201904010311the Special Project for Marine Economy Development of Guangdong Province under contract No.GDME-2018D002。
文摘Anaerobic oxidation of methane(AOM) is an important biogeochemical process, which has important scientific significance for global climate change and atmospheric evolution. This research examined the δ^(34)S, terrigenous clastic indices of TiO_(2) and Al_(2)O_(3), and times for formation of the Ba front at site SH1, site SH3 and site 973-4 in the South China Sea. Three different coupling mechanisms of deposition rate and methane flux were discovered. The different coupling mechanisms had different effects on the role of AOM. At site 973-4, a high deposition rate caused a rapid vertical downward migration of the sulphate–methane transition zone(SMTZ), and the higher input resulted in mineral dissolution. At site SH3, the deposition rate and methane flux were basically in balance,so the SMTZ and paleo-SMTZ were the most stable of any site, and these were in a slow process of migration. At site SH1, the methane flux dominated the coupled mode, so the movement of the SMTZ at site SH1 was consistent with the general understanding. Understanding the factors influencing the SMTZ is important for understanding the early diagenesis process.