In this work, we will discuss Caristi’s fixed point theorem for mapping results introduced in the setting of normed spaces. This work is a generalization of the classical Caristi’s fixed point theorem. Also, Caristi...In this work, we will discuss Caristi’s fixed point theorem for mapping results introduced in the setting of normed spaces. This work is a generalization of the classical Caristi’s fixed point theorem. Also, Caristi’s type of fixed points theorem was partial discussed in Reich, Mizoguchi and Takahashi’s and Amini-Harandi’s results, we developed ideas that many known fixed point theorems can easily be derived from the Caristi theorem.展开更多
This paper aims at treating a study of Banach fixed point theorem for mapping results that introduced in the setting of normed space. The classical Banach fixed point theorem is a generalization of this work. A fixed ...This paper aims at treating a study of Banach fixed point theorem for mapping results that introduced in the setting of normed space. The classical Banach fixed point theorem is a generalization of this work. A fixed point theory is a beautiful mixture of Mathematical analysis to explain some conditions in which maps give excellent solutions. Here later many mathematicians used this fixed point theory to establish their results, see for instance, Picard-Lindel of Theorem, The Picard theorem, Implicit function theorem etc. Also, we developed ideas that many of known fixed point theorems can easily be derived from the Banach theorem. It extends some recent works on the extension of Banach contraction principle to metric space with norm spaces.展开更多
In this paper, some new iterative schemes for approximating the common element of the set of fixed points of strongly relatively nonexpansive mappings and the set of zero points of maximal monotone operators in a real...In this paper, some new iterative schemes for approximating the common element of the set of fixed points of strongly relatively nonexpansive mappings and the set of zero points of maximal monotone operators in a real uniformly smooth and uniformly convex Banach space are proposed. Some weak convergence theorems are obtained, which extend and complement some previous work.展开更多
We establish weak and strong convergence of Ishikawa type iterates of two pointwise asymptotic nonexpansive maps in a Hadamard space. For weak and strong convergence results, we drop “rate of convergence condition”,...We establish weak and strong convergence of Ishikawa type iterates of two pointwise asymptotic nonexpansive maps in a Hadamard space. For weak and strong convergence results, we drop “rate of convergence condition”, namely (Cn(x)-1)< to answer in the affirma-tive to the open question posed by Tan and Xu [1] even in a general setup.展开更多
This article studies the initial-boundary value problem for a three dimensional magnetic-curvature-driven Rayleigh-Taylor model.We first obtain the global existence of weak solutions for the full model equation by emp...This article studies the initial-boundary value problem for a three dimensional magnetic-curvature-driven Rayleigh-Taylor model.We first obtain the global existence of weak solutions for the full model equation by employing the Galerkin’s approximation method.Secondly,for a slightly simplified model,we show the existence and uniqueness of global strong solutions via the Banach’s fixed point theorem and vanishing viscosity method.展开更多
A few weak and strong convergence theorems of the modified three-step iterative sequence with errors and the modified Ishikawa iterative sequence with errors for asymptotically non-expansive mappings in any non-empty ...A few weak and strong convergence theorems of the modified three-step iterative sequence with errors and the modified Ishikawa iterative sequence with errors for asymptotically non-expansive mappings in any non-empty closed convex subsets of uniformly convex Banach spaces are established. The results presented in this paper substantially extend the results due to Chang (2001), Osilike and Aniagbosor (2000), Rhoades (1994) and Schu (1991).展开更多
The purpose of this paper is to introduce a split generalized mixed equi- librium problem (SGMEP) and consider some iterative sequences to find a solution of the generalized mixed equilibrium problem such that its i...The purpose of this paper is to introduce a split generalized mixed equi- librium problem (SGMEP) and consider some iterative sequences to find a solution of the generalized mixed equilibrium problem such that its image un- der a given bounded linear operator is a solution of another generalized mixed equilibrium problem. We obtain some weak and strong convergence theorems.展开更多
In this paper,we introduce a new iterative scheme for finding the common element of the set of solutions of an equilibrium problem,the set of solutions of variational inequalities for an α-inversely strongly monotone...In this paper,we introduce a new iterative scheme for finding the common element of the set of solutions of an equilibrium problem,the set of solutions of variational inequalities for an α-inversely strongly monotone operator and the set of fixed points of relatively nonexpansive mappings in a real uniformly smooth and 2-uniformly convex Banach space.Some weak convergence theorems are obtained,to extend the previous work.展开更多
In this paper, the theorem of the alternative based on separation functions in ordered locally convex topological vector spaces has been established by using the concept on set valued mappings. The optimality con...In this paper, the theorem of the alternative based on separation functions in ordered locally convex topological vector spaces has been established by using the concept on set valued mappings. The optimality conditions in ref. for D convex function have been generalized to ordered locally convex topological vector space and the similarly optimality conditions for D subconvexlike functions, such as the necessary and sufficient conditions of nondominated solutions, the generalized saddle point theorems and the lagrange duality theorems, have been obtained.展开更多
文摘In this work, we will discuss Caristi’s fixed point theorem for mapping results introduced in the setting of normed spaces. This work is a generalization of the classical Caristi’s fixed point theorem. Also, Caristi’s type of fixed points theorem was partial discussed in Reich, Mizoguchi and Takahashi’s and Amini-Harandi’s results, we developed ideas that many known fixed point theorems can easily be derived from the Caristi theorem.
文摘This paper aims at treating a study of Banach fixed point theorem for mapping results that introduced in the setting of normed space. The classical Banach fixed point theorem is a generalization of this work. A fixed point theory is a beautiful mixture of Mathematical analysis to explain some conditions in which maps give excellent solutions. Here later many mathematicians used this fixed point theory to establish their results, see for instance, Picard-Lindel of Theorem, The Picard theorem, Implicit function theorem etc. Also, we developed ideas that many of known fixed point theorems can easily be derived from the Banach theorem. It extends some recent works on the extension of Banach contraction principle to metric space with norm spaces.
基金Supported by the National Natural Science Foundation of China(10771050)the Natural Science Foun-dation of Hebei Province(A2010001482)
文摘In this paper, some new iterative schemes for approximating the common element of the set of fixed points of strongly relatively nonexpansive mappings and the set of zero points of maximal monotone operators in a real uniformly smooth and uniformly convex Banach space are proposed. Some weak convergence theorems are obtained, which extend and complement some previous work.
文摘We establish weak and strong convergence of Ishikawa type iterates of two pointwise asymptotic nonexpansive maps in a Hadamard space. For weak and strong convergence results, we drop “rate of convergence condition”, namely (Cn(x)-1)< to answer in the affirma-tive to the open question posed by Tan and Xu [1] even in a general setup.
基金This article is support in part by NNSF(11871172)Natural Science Foundation of Guangdong Province of China(2019A1515012000).
文摘This article studies the initial-boundary value problem for a three dimensional magnetic-curvature-driven Rayleigh-Taylor model.We first obtain the global existence of weak solutions for the full model equation by employing the Galerkin’s approximation method.Secondly,for a slightly simplified model,we show the existence and uniqueness of global strong solutions via the Banach’s fixed point theorem and vanishing viscosity method.
基金supported by Korea Research Foundation Grant(KRF-2001-005-D00002)
文摘A few weak and strong convergence theorems of the modified three-step iterative sequence with errors and the modified Ishikawa iterative sequence with errors for asymptotically non-expansive mappings in any non-empty closed convex subsets of uniformly convex Banach spaces are established. The results presented in this paper substantially extend the results due to Chang (2001), Osilike and Aniagbosor (2000), Rhoades (1994) and Schu (1991).
基金supported by the Science and Technology Project of Education Department of Fujian Province(Grant number:JA13363)
文摘The purpose of this paper is to introduce a split generalized mixed equi- librium problem (SGMEP) and consider some iterative sequences to find a solution of the generalized mixed equilibrium problem such that its image un- der a given bounded linear operator is a solution of another generalized mixed equilibrium problem. We obtain some weak and strong convergence theorems.
基金Supported by the National Natural Science Foundation of China (Grant No. 11071053)the Natural Science Foundation of Hebei Province (Grant No. A.2010001482)the Project of Science and Research of Hebei Education Department (the second round in 2010)
文摘In this paper,we introduce a new iterative scheme for finding the common element of the set of solutions of an equilibrium problem,the set of solutions of variational inequalities for an α-inversely strongly monotone operator and the set of fixed points of relatively nonexpansive mappings in a real uniformly smooth and 2-uniformly convex Banach space.Some weak convergence theorems are obtained,to extend the previous work.
文摘In this paper, the theorem of the alternative based on separation functions in ordered locally convex topological vector spaces has been established by using the concept on set valued mappings. The optimality conditions in ref. for D convex function have been generalized to ordered locally convex topological vector space and the similarly optimality conditions for D subconvexlike functions, such as the necessary and sufficient conditions of nondominated solutions, the generalized saddle point theorems and the lagrange duality theorems, have been obtained.