The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,bi...The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,birch,etc.),Camellia wastes contain diverse bioactive substances in addition to the abundant lignocellulosic components,and thus,the biorefinery utilization of C.oleifera processing byproducts involves complicated processing technologies.This reviewfirst summarizes various technologies for extracting and converting the main components in C.oleifera oil processing byproducts into value-added chemicals and biobased materials,as well as their potential applications.Microwave,ultrasound,and Soxhlet extractions are compared for the extraction of functional bioactive components(tannin,flavonoid,saponin,etc.),while solvothermal conversion and pyrolysis are discussed for the conversion of lignocellulosic components into value-added chemicals.The application areas of these chemicals according to their properties are introduced in detail,including utilizing antioxidant and anti-in-flammatory properties of the bioactive substances for the specific application,as well as drop-in chemicals for the substitution of unrenewable fossil fuel-derived products.In addition to chemical production,biochar fabricated from COS and its applications in thefields of adsorption,supercapacitor,soil remediation and wood composites are comprehensively reviewed and discussed.Finally,based on the compositions and structural characteristics of C.oleifera byproducts,the development of full-component valorization strategies and the expansion of the appli-cationfields are proposed.展开更多
Plastic,renowned for its versatility,durability,and cost-effectiveness,is indispensable in modern society.Nevertheless,the annual production of nearly 400 million tons of plastic,coupled with a recycling rate of only ...Plastic,renowned for its versatility,durability,and cost-effectiveness,is indispensable in modern society.Nevertheless,the annual production of nearly 400 million tons of plastic,coupled with a recycling rate of only 9%,has led to a monumental environmental crisis.Plastic recycling has emerged as a vital response to this crisis,offering sustainable solutions to mitigate its environmental impact.Among these recycling efforts,plastic upcycling has garnered attention,which elevates discarded plastics into higher-value products.Here,electrocatalytic and photoelectrocatalytic treatments stand at the forefront of advanced plastic upcycling.Electrocatalytic or photoelectrocatalytic treatments involve chemical reactions that facilitate electron transfer through the electrode/electrolyte interface,driven by electrical or solar energy,respectively.These methods enable precise control of chemical reactions,harnessing potential,current density,or light to yield valuable chemical products.This review explores recent progress in plastic upcycling through electrocatalytic and photoelectrocatalytic pathways,offering promising solutions to the plastic waste crisis and advancing sustainability in the plastics industry.展开更多
In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting t...In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting the cargo of proteins,lipids,and other molecules to appropriate compartments via transport vesicles or intermediates.These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain(RAB)protein family,which is the largest subfamily of the RAS superfamily.Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases,including neurological disorders and neurodegenerative diseases.Therefore,it is important to understand the physiological and pathological roles of RAB proteins in brain function.RAB35,a member of the RAB family,is an evolutionarily conserved protein in metazoans.A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis,endocytic recycling,actin bundling,and cell migration.RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles.We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function.These mice exhibited defects in anxiety-related behaviors and spatial memory.Strikingly,RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development,and thereby for normal hippocampal lamination.In contrast,layer formation in the cerebral cortex occurred superficially,even in the absence of RAB35,suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development.Recent studies have suggested an association between RAB35 and neurodegenerative diseases,including Parkinson's disease and Alzheimer's disease.In this review,we provide an overview of the current understanding of subcellular functions of RAB35.We also provide insights into the physiological role of RAB35 in mammalian brain development and function,and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.展开更多
Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-li...Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.展开更多
The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and contin...The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.展开更多
Solar energy utilization has drawn attention due to ever-increasing environmental and energy issues.Photoelectrochemical(PEC)and photocatalytic(PC)water splitting for hydrogen production,which is the most popular and ...Solar energy utilization has drawn attention due to ever-increasing environmental and energy issues.Photoelectrochemical(PEC)and photocatalytic(PC)water splitting for hydrogen production,which is the most popular and well-established solar-to-chemical conversion process,has been studied thoroughly to date but is now facing limitations related to low conversion efficiency.To resolve this issue,research in PEC cells or photocatalysts has recently aimed to produce alternative value-added chemicals by modifying their redox reactions,which potentially enables high economic reward to compensate for the low efficiency.Here,various kinds of redox reactions that decouple classic water splitting reactions to produce value-added chemicals via PEC and PC processes are introduced.Successful coupling of CO_(2) reduction,O_(2) reduction and organic synthesis with either water oxidation or water reduction is comprehensively discussed from the perspective of basic fundamental and product selectivity in terms of the band structure of materials,cocatalyst design,and thermodynamics and kinetics of the reactions.Throughout the review,future challenges and opportunities are suggested with respect to the redesigned artificial synthesis,which might be an alternative development for the commercialization of PEC or PC value-added chemical production technologies in the near future.展开更多
Microalgae have been considered as an efficient microorganism for wastewater treatment with simultaneously bioenergy and high value-added compounds production.However,the high energy cost associated with complicated b...Microalgae have been considered as an efficient microorganism for wastewater treatment with simultaneously bioenergy and high value-added compounds production.However,the high energy cost associated with complicated biorefinery(e.g.microalgae cultivation,harvesting,drying,extraction,conversion,and purification)is a critical challenge that inhibits its large-scale application.Among different nutrition(e.g.carbon,nitrogen and phosphorous)sources,food processing wastewater is a relative safe and suitable one for microalgae cultivation due to its high organic content and low toxicity.In this review,the characteristic of different food wastewater is summarized and compared.The potential routes of value-added products(i.e.biofuel,pigment,polysaccharide,and amino acid)production along with wastewater purification are introduced.The existing challenges(e.g.biorefinery cost,efficiency and mechanism)of microalgal-based wastewater treatment are also discussed.The prospective of microalgae-based food processing wastewater treatment strategies(such as microalgae-bacteria consortium,poly-generation of bioenergy and value-added products)is forecasted.It can be observed that food wastewater treatment by microalgae could be a promising strategy to commercially realize waste source reduce,conversion and reutilization.展开更多
The ethanol electro-reforming process was studied over PtRu/C catalysts synthesized by the modified polyol method with different compositions.In particular,this work reports the influence of anodic Pt:Ru ratio(5:1,2:1...The ethanol electro-reforming process was studied over PtRu/C catalysts synthesized by the modified polyol method with different compositions.In particular,this work reports the influence of anodic Pt:Ru ratio(5:1,2:1 and 1:2)on the organic product distribution(acetaldehyde,acetic acid and ethyl acetate)and pure hydrogen generation at different current densities operation levels.Physicochemical characterization of the catalysts was made by X-ray diffraction(XRD),temperature-programmed reduction(TPR)and N_(2) adsorption-desorption measurements.XRD patterns showed that Ru is introduced into the Pt structure,forming an alloy between both metals.Also,the degree of alloy was higher by increasing the Ru amounts.From TPR profiles Pt was found to be properly reduced while Ru was both in metallic state and forming RuO2.The electrochemical behaviour of each catalyst towards ethanol electroreforming process was investigated through electrochemical techniques in a half cell and a single proton exchange membrane(PEM)cell systems.An intermediate Pt:Ru ratio was found to result in high current density and electrochemical surface area(ECSA)values along with lower amounts of adsorbed species.Also,Ru addition seems to diminish the degree of degradation of the catalyst.Based on characterization and in agreement with essays carried out in a PEM cell at mild conditions(80℃ and 1 atm),PtRu/C 2:1 anode provided the best electrocatalytic results in terms of current density(740 mA cm^(-2)),hydrogen production and selectivity toward acetic acid(up to 15%apart from acetaldehyde and ethyl acetate)while requiring the lowest energy consumption.展开更多
From Jan. 1st, 2009, the value-added tax transformation will be performed in all industries around the country. Based on value-added tax types and retrospection of reform practices, this article analyzes the backgroun...From Jan. 1st, 2009, the value-added tax transformation will be performed in all industries around the country. Based on value-added tax types and retrospection of reform practices, this article analyzes the background of the national value-added tax transformation and points out the influence of full implementation of the value-added tax transformation on various enterprises.展开更多
China's 40-year history of reform and opening-up includes rapid economic development as well as pollution and environmental governance.Using a four-stage division,this study explores the evolution trend and struct...China's 40-year history of reform and opening-up includes rapid economic development as well as pollution and environmental governance.Using a four-stage division,this study explores the evolution trend and structural decomposition of China's green value-added by constructing a non-competitive input-output table for environmental pollution from 1978 to 2017.The results indicate that pollution production coefficients increased continuously,and the green value-added index decreased.Additionally,the structural decomposition showed that investment and export were critical for economic growth during the period,though they were accompanied by serious pollution problems.The pollution generated by the raw material(represented by coal mining)and processing industries(represented by the textiles)were not controlled effectively.Pollution treatment for these industries should be strengthened in the future.The study has implications for government officials,policy makers,and academics.First,China should make green development a core concept for economic development,increase environmental pollution governance,develop a“green GDP,”incorporate the external costs of environmental pollution into the national economic accounting system.Second,it must change the investment and export structure as well as the traditional economic development pattern that exacerbates pollution.Specifically,the country should develop industries with low pollution and promote the export of industries producing high value-added products and increase green GDP per capita.Third,it should closely monitor the development of highly polluting industries.Upgrading technology to reduce pollution and strengthening pollution treatment will reduce the number of polluting industries and improve environmental governance efficiency.展开更多
Lily(Lilium spp.)is an important horticultural crop,but its use is limited due to serious pollen contamination problems.There are many studies on pollen development in model plants,but few on flower crops such as lili...Lily(Lilium spp.)is an important horticultural crop,but its use is limited due to serious pollen contamination problems.There are many studies on pollen development in model plants,but few on flower crops such as lilies.Gibberellin(GA)is a large class of hormones and plays an important role in plant vegetative growth and reproductive development.GAMYB is a group of the R2R3-MYB family upregulated by gibberellin,and plays an important role in anther development.Here,we isolated a novel GAMYB,named LoMYB65,from lily,which was closely related to the AtMYB65 and AtMYB33 in Arabidopsis.Fluorescence quantitative PCR results showed that LoMYB65 was mainly expressed in lily anthers.LoMYB65 could be activated by 288μmol·L^(-1)GA3treatment and the LoMYB65 protein was located in the nucleus and cytoplasm,and had transactivation in yeast and tobacco leaf cells.The conserved motif within 226 amino acids of the C-terminal of LoMYB65 contributed to its transactivation.Overexpression of LoMYB65 caused dwarf phenotype,unnormal tapetum development,less seeds of siliques in transgenic Arabidopsis plants,the transgenic plants showed partly male sterile.Simultaneously,silencing of LoMYB65 with VIGS(Virus Induced Gene Silencing)in lily anthers caused unnormal pollen development and reduced the pollen amount.Overexpression of LoMYB65 in Arabidopsis and silencing of LoMYB65 in lily resulted in decreased pollen counts,so we speculate that LoMYB65 may be dose-dependent.Overall,these findings suggest that LoMYB65 may play an important role in anther development and pollen formation in lily.LoMYB65 may provide a useful candidate gene for pollenless breeding of lily.展开更多
Teacher evaluations intend to cultivate quality among teachers. However, since they are traditionally dependent on observers and their reports that are likely biased, the procedures probably effectuate discords among ...Teacher evaluations intend to cultivate quality among teachers. However, since they are traditionally dependent on observers and their reports that are likely biased, the procedures probably effectuate discords among the calling-teaching professionals. An evaluation procedure that can ascertain fairness in the decisions about teacher retentions, terminations, promotions, and sanctions can capture the accordance of all teachers and teacher facilitators. This paper identifies the possibility of such an evaluation system that is built upon the existing value-added methods. Drawing upon the observations and recommendations by Chetty, Friedman, and Rockoff (2012) on value-added methods of evaluation, and considering the uniqueness of ELTs (English Language Teachers) as it was observed by Borg (2006) and Lee (2010), this paper describes the application of the value-added evaluation method, in gauging the quality of ELTs. The paper further explicates the vantages and conformities embodied in the procedure that could boost up the morale of ELTs as independent professionals of a creative art, and help them perform to their fullest potential展开更多
Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-mi...Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons.展开更多
This article introduces the Push-to-talk over Cellular( PoC) service, a new mobile value-added service based on the IP Multimedia Subsystem (IMS). Its implementation scheme is discussed and its Session Initiation Prot...This article introduces the Push-to-talk over Cellular( PoC) service, a new mobile value-added service based on the IP Multimedia Subsystem (IMS). Its implementation scheme is discussed and its Session Initiation Protocol (SIP) signaling exchange flow is described. Target user groups are predicted based on the analysis of the strengths and weaknesses of the PoC service. The article purports that the PoC system could undoubtedly be used as a platform for new services such as multimedia messaging, instant messaging, presence, and picture receiving and sending. Just like the short message service, the PoC service will help the terminal vendors, equipment vendors, content providers and operators setup a win-for-all industrial value chain.展开更多
Estimation of domestic and overseas value-added of manufacturing sector is an important and difficult subject for the science-based evaluation of a country's trade interests under global value chain. Traditional HIY ...Estimation of domestic and overseas value-added of manufacturing sector is an important and difficult subject for the science-based evaluation of a country's trade interests under global value chain. Traditional HIY approach overestimates the domestic value- added of export. Although Koopman's method made certain improvements, it cannot utilize traditional I/O matrix and direct input coefficient matrix under the condition of incomplete information. By creating GAMS model, this paper addresses the above-mentioned problems and employs an improved model for the estimation of variations in domestic and overseas value-added of Chinese exports between 2002 and 2012. Our results indicate that by neglecting the export of processing trade, HIY approach overestimates the domestic value- added ratio of Chinese exports. As more imported intermediate inputs have been used in the export of processing trade, the estimation result of this paper have corrected deviations in the forecast of overseas value-added ratio and its tendencies based on HIY method Further analysis of specific factors of domestic value-added of export led to the discovery that the domestic value-added of export of processing trade and mixed trade is highly vulnerable to the impact of international capital inflow. It can be seen that the improved method for the estimation of value-added has indeed corrected the deviations in the estimation of China's value-added. In conclusion, China should accelerate the development of export of non- processing trade and trade in high-end services, and balance the relationship of export between local firms and foreign-funded firms, with a view to improving trade dependence and increasing the trade status of Chinese manufaeturing firms in global value chain.展开更多
This paper examines the nutrition impacts of using non-solid cooking fuel on under-five children in developing countries.We draw on data from more than 1.12 million children in 62 developing countries from the Demogra...This paper examines the nutrition impacts of using non-solid cooking fuel on under-five children in developing countries.We draw on data from more than 1.12 million children in 62 developing countries from the Demographic and Health Surveys(DHS).Results from both fixed effects(FE)and instrumental variable(IV)estimates show that using non-solid cooking fuel significantly improves the nutrition outcomes of under-five children.Compared with their peers from households mainly using solid fuel,children from households mainly using non-solid fuel exhibit a lower probability of experiencing stunting(by 5.9 percentage points)and being underweight(by 1.2 percentage points).Our further investigation provides evidence for several underlying mechanisms,such as improved indoor air quality,induced reduction in children’s respiratory symptoms,benefits on maternal health,and reduction in maternal time spent on fuel collection or cooking.Heterogenous analyses suggest that the nutrition benefits of using non-solid cooking fuel are more prominent among boys,children above three years old,and those from households of lower socioeconomic status,rural areas,and Southeast Asia.展开更多
Based on trade in value-added, this paper has estimated the revealed comparative advantage (RCA) of China's various manufacturing sectors between 1995 and 2011 and compared with the RCA indexes measured using conve...Based on trade in value-added, this paper has estimated the revealed comparative advantage (RCA) of China's various manufacturing sectors between 1995 and 2011 and compared with the RCA indexes measured using conventional aggregate accounting approach. Results indicate that: (1) the RCA index measured using conventional aggregate accounting approach has underestimated China's comparative advantage of labor-intensive sectors but overestimated China's comparative advantage in capital, knowledge and technology-intensive manufacturing sectors, giving rise to a serious misjudgment. (2) The RCA measured using value-added approach shows that in the industry chain layout of global manufacturing sectors, China's comparative advantage is still concentrated in labor-intensive manufacturing sectors but has signs of weakening; in capital, knowledge and technology-intensive sectors, China is yet to develop any significant comparative advantage; there are signs that China is developing comparative advantage in capital-intensive sectors yet China's comparative disadvantage in knowledge and technology-intensive sectors has no significant tendency to improve. This result not only helps correct the misjudgment of China's competitiveness in manufacturing sectors based on conventional aggregate accounting approach but offers important policy implications for setting strategic directions and policies for China's manufacturing transition and upgrade.展开更多
In order to promote the revitalization and development of rural areas and protect the property rights of farmers,it is necessary to explore the reasonable distribution ratio of land value-added income in collective op...In order to promote the revitalization and development of rural areas and protect the property rights of farmers,it is necessary to explore the reasonable distribution ratio of land value-added income in collective operating construction land.Under the existing land value-added income distribution model,the land value-added income obtained by the government is much greater than that of village collectives,and it is difficult for village collectives and farmers to enjoy greater benefits.This distribution model is not conducive to protecting the property rights of farmers.The results show that there was a positive correlation between land value-added income and land level,that is,the higher the land level was,the higher the value-added income and its ratio to the market transaction price were.According to calculation,the reasonable distribution ratio of the value-added income of collective operating construction land entering the market among the government,village collectives and farmers was 28.6%,51.1%,and 20.3%respectively.The actual land value-added income obtained by farmers was greatly improved compared with the current situation.In actual operation,this distribution mode has universal applicability.The reform of entering the market in the future also needs to raise the standards for entering the market,explore diversified interest protection channels,and strengthen the construction of rural collective management system.展开更多
The comprehensive benefit evaluation of the existing building energy efficient renovation project cannot be separated from the scientific and effective evaluation mechanism.Based on the value-added life perspective,th...The comprehensive benefit evaluation of the existing building energy efficient renovation project cannot be separated from the scientific and effective evaluation mechanism.Based on the value-added life perspective,this paper analyzes the implementation subject,standard,system and principle of the comprehensive benefit evaluation of the existing building energy efficient renovation project.It plans the process of comprehensive benefit evaluation,and builds a scientific and reasonable operation platform of evaluation system,with a view to promoting the effective implementation of the comprehensive benefit evaluation of existing building energy-saving retrofits.展开更多
This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal syste...This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.展开更多
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Grant No.32201509)Hunan Science and Technology Xiaohe Talent Support Project(2022 TJ-XH 013)+6 种基金Science and Technology Innovation Program of Hunan Province(2022RC1156,2021RC2100)State Key Laboratory of Woody Oil Resource Utilization Common Key Technology Innovation for the Green Transformation of Woody Oil(XLKY202205)State Key Laboratory of Woody Oil Resource Utilization Project(2019XK2002)Key Research and Development Program of the State Forestry and Grassland Administration(GLM[2021]95)Hunan Forestry Outstanding Youth Project(XLK202108-1)Changsha Science and Technology Project(kq2202325,kq2107022)Science and Technology Innovation Leading Talent of Hunan Province(2020RC4026).
文摘The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,birch,etc.),Camellia wastes contain diverse bioactive substances in addition to the abundant lignocellulosic components,and thus,the biorefinery utilization of C.oleifera processing byproducts involves complicated processing technologies.This reviewfirst summarizes various technologies for extracting and converting the main components in C.oleifera oil processing byproducts into value-added chemicals and biobased materials,as well as their potential applications.Microwave,ultrasound,and Soxhlet extractions are compared for the extraction of functional bioactive components(tannin,flavonoid,saponin,etc.),while solvothermal conversion and pyrolysis are discussed for the conversion of lignocellulosic components into value-added chemicals.The application areas of these chemicals according to their properties are introduced in detail,including utilizing antioxidant and anti-in-flammatory properties of the bioactive substances for the specific application,as well as drop-in chemicals for the substitution of unrenewable fossil fuel-derived products.In addition to chemical production,biochar fabricated from COS and its applications in thefields of adsorption,supercapacitor,soil remediation and wood composites are comprehensively reviewed and discussed.Finally,based on the compositions and structural characteristics of C.oleifera byproducts,the development of full-component valorization strategies and the expansion of the appli-cationfields are proposed.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2023-00302697,2022H1D3A3A01077254)。
文摘Plastic,renowned for its versatility,durability,and cost-effectiveness,is indispensable in modern society.Nevertheless,the annual production of nearly 400 million tons of plastic,coupled with a recycling rate of only 9%,has led to a monumental environmental crisis.Plastic recycling has emerged as a vital response to this crisis,offering sustainable solutions to mitigate its environmental impact.Among these recycling efforts,plastic upcycling has garnered attention,which elevates discarded plastics into higher-value products.Here,electrocatalytic and photoelectrocatalytic treatments stand at the forefront of advanced plastic upcycling.Electrocatalytic or photoelectrocatalytic treatments involve chemical reactions that facilitate electron transfer through the electrode/electrolyte interface,driven by electrical or solar energy,respectively.These methods enable precise control of chemical reactions,harnessing potential,current density,or light to yield valuable chemical products.This review explores recent progress in plastic upcycling through electrocatalytic and photoelectrocatalytic pathways,offering promising solutions to the plastic waste crisis and advancing sustainability in the plastics industry.
基金supported by the Japan Society for the Promotion of Science KAKENHI(grant Nos.23K05678 to IM,19H05711 and 20H00466 to KS)the Joint Research Program of Institute for Molecular and Cellular Regulation,Gunma University(to KS)。
文摘In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting the cargo of proteins,lipids,and other molecules to appropriate compartments via transport vesicles or intermediates.These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain(RAB)protein family,which is the largest subfamily of the RAS superfamily.Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases,including neurological disorders and neurodegenerative diseases.Therefore,it is important to understand the physiological and pathological roles of RAB proteins in brain function.RAB35,a member of the RAB family,is an evolutionarily conserved protein in metazoans.A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis,endocytic recycling,actin bundling,and cell migration.RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles.We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function.These mice exhibited defects in anxiety-related behaviors and spatial memory.Strikingly,RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development,and thereby for normal hippocampal lamination.In contrast,layer formation in the cerebral cortex occurred superficially,even in the absence of RAB35,suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development.Recent studies have suggested an association between RAB35 and neurodegenerative diseases,including Parkinson's disease and Alzheimer's disease.In this review,we provide an overview of the current understanding of subcellular functions of RAB35.We also provide insights into the physiological role of RAB35 in mammalian brain development and function,and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.
基金supported by the National Key R&D Program of China,No.2019YFA0110300(to ZG)the National Natural Science Foundation of China,Nos.81773302(to YF),32070862(to ZG).
文摘Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.
基金supported by the National Natural Science Foundation of China,Nos.81901156(to ZZ),82271200(to ZZ),82171308(to XC)the Fundamental Research Funds for the Central Universities,No.xzy012022035(to ZZ)+1 种基金the Natural Science Foundation of Shaanxi Province,Nos.2021JM-261(to QK),2023-YBSF-303(to ZZ)Traditional Chinese Medicine Project of Shaanxi Province,No.2019-ZZ-JC047(to QK)。
文摘The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.
基金Sungsoon Kim,Kwang Hee Kim and Cheoulwoo Oh contributed equally as cofirst authors.Kan Zhang acknowledges the support from NSFC(51802157,21902104)the Natural Science Foundation of Jiangsu Province of China(BZ2020063)Jong Hyeok Park acknowledges the support from the National Research Foundation(NRF)of Korea(2019R1A4A1029237,2021M3E6A1015823,2017M3A7B4041987).
文摘Solar energy utilization has drawn attention due to ever-increasing environmental and energy issues.Photoelectrochemical(PEC)and photocatalytic(PC)water splitting for hydrogen production,which is the most popular and well-established solar-to-chemical conversion process,has been studied thoroughly to date but is now facing limitations related to low conversion efficiency.To resolve this issue,research in PEC cells or photocatalysts has recently aimed to produce alternative value-added chemicals by modifying their redox reactions,which potentially enables high economic reward to compensate for the low efficiency.Here,various kinds of redox reactions that decouple classic water splitting reactions to produce value-added chemicals via PEC and PC processes are introduced.Successful coupling of CO_(2) reduction,O_(2) reduction and organic synthesis with either water oxidation or water reduction is comprehensively discussed from the perspective of basic fundamental and product selectivity in terms of the band structure of materials,cocatalyst design,and thermodynamics and kinetics of the reactions.Throughout the review,future challenges and opportunities are suggested with respect to the redesigned artificial synthesis,which might be an alternative development for the commercialization of PEC or PC value-added chemical production technologies in the near future.
基金Supported by the National key Research and Development project(2016YFB0601003)National Natural Science Foundation of China(21878228 and31701526)+3 种基金Basic Research Fees of Universities and Colleges in Tianjin(2017KJ001)Youth Teacher Innovation Fund of Tianjin University of Science&Technology(2015LG26)Project Program of Key Laboratory of Food Nutrition and Safety,Ministry of Education,China(2018007)Open Project program of State Key Laboratory of Food Nutrition and Safety,Tianjin University of Science&Technology(SKLFNS-KF-201824).
文摘Microalgae have been considered as an efficient microorganism for wastewater treatment with simultaneously bioenergy and high value-added compounds production.However,the high energy cost associated with complicated biorefinery(e.g.microalgae cultivation,harvesting,drying,extraction,conversion,and purification)is a critical challenge that inhibits its large-scale application.Among different nutrition(e.g.carbon,nitrogen and phosphorous)sources,food processing wastewater is a relative safe and suitable one for microalgae cultivation due to its high organic content and low toxicity.In this review,the characteristic of different food wastewater is summarized and compared.The potential routes of value-added products(i.e.biofuel,pigment,polysaccharide,and amino acid)production along with wastewater purification are introduced.The existing challenges(e.g.biorefinery cost,efficiency and mechanism)of microalgal-based wastewater treatment are also discussed.The prospective of microalgae-based food processing wastewater treatment strategies(such as microalgae-bacteria consortium,poly-generation of bioenergy and value-added products)is forecasted.It can be observed that food wastewater treatment by microalgae could be a promising strategy to commercially realize waste source reduce,conversion and reutilization.
基金the Spanish Ministry of Economy and Competitiveness(projects CTQ2016-75491-R)for the financial support。
文摘The ethanol electro-reforming process was studied over PtRu/C catalysts synthesized by the modified polyol method with different compositions.In particular,this work reports the influence of anodic Pt:Ru ratio(5:1,2:1 and 1:2)on the organic product distribution(acetaldehyde,acetic acid and ethyl acetate)and pure hydrogen generation at different current densities operation levels.Physicochemical characterization of the catalysts was made by X-ray diffraction(XRD),temperature-programmed reduction(TPR)and N_(2) adsorption-desorption measurements.XRD patterns showed that Ru is introduced into the Pt structure,forming an alloy between both metals.Also,the degree of alloy was higher by increasing the Ru amounts.From TPR profiles Pt was found to be properly reduced while Ru was both in metallic state and forming RuO2.The electrochemical behaviour of each catalyst towards ethanol electroreforming process was investigated through electrochemical techniques in a half cell and a single proton exchange membrane(PEM)cell systems.An intermediate Pt:Ru ratio was found to result in high current density and electrochemical surface area(ECSA)values along with lower amounts of adsorbed species.Also,Ru addition seems to diminish the degree of degradation of the catalyst.Based on characterization and in agreement with essays carried out in a PEM cell at mild conditions(80℃ and 1 atm),PtRu/C 2:1 anode provided the best electrocatalytic results in terms of current density(740 mA cm^(-2)),hydrogen production and selectivity toward acetic acid(up to 15%apart from acetaldehyde and ethyl acetate)while requiring the lowest energy consumption.
文摘From Jan. 1st, 2009, the value-added tax transformation will be performed in all industries around the country. Based on value-added tax types and retrospection of reform practices, this article analyzes the background of the national value-added tax transformation and points out the influence of full implementation of the value-added tax transformation on various enterprises.
基金supported by the Key Project of National Social Science Foundation of China[Grant number:14AZD085],“Research on the Evolution Trend and Countermeasures of China's Economic Growth Quality under the New Normal Condition”the Project of National Natural Science Foundation of China[Grant number:71373106],“Research on the Transformation Dynamics of Industrial Added Value Rate and Policy Simulation:A Case Study of Manufacturing Industry in Yangtze River Delta.”。
文摘China's 40-year history of reform and opening-up includes rapid economic development as well as pollution and environmental governance.Using a four-stage division,this study explores the evolution trend and structural decomposition of China's green value-added by constructing a non-competitive input-output table for environmental pollution from 1978 to 2017.The results indicate that pollution production coefficients increased continuously,and the green value-added index decreased.Additionally,the structural decomposition showed that investment and export were critical for economic growth during the period,though they were accompanied by serious pollution problems.The pollution generated by the raw material(represented by coal mining)and processing industries(represented by the textiles)were not controlled effectively.Pollution treatment for these industries should be strengthened in the future.The study has implications for government officials,policy makers,and academics.First,China should make green development a core concept for economic development,increase environmental pollution governance,develop a“green GDP,”incorporate the external costs of environmental pollution into the national economic accounting system.Second,it must change the investment and export structure as well as the traditional economic development pattern that exacerbates pollution.Specifically,the country should develop industries with low pollution and promote the export of industries producing high value-added products and increase green GDP per capita.Third,it should closely monitor the development of highly polluting industries.Upgrading technology to reduce pollution and strengthening pollution treatment will reduce the number of polluting industries and improve environmental governance efficiency.
基金supported by the National Key Research and Development Program of China(2022YFD1200500)the Fundamental Research Funds for the Central Universities(KYZZ2022004)+1 种基金the Project for Crop Germplasm Resources Conservation of Jiangsu(2021-SJ-011)the High Level Talent Project of the Top Six Talents in Jiangsu(NY-077)。
文摘Lily(Lilium spp.)is an important horticultural crop,but its use is limited due to serious pollen contamination problems.There are many studies on pollen development in model plants,but few on flower crops such as lilies.Gibberellin(GA)is a large class of hormones and plays an important role in plant vegetative growth and reproductive development.GAMYB is a group of the R2R3-MYB family upregulated by gibberellin,and plays an important role in anther development.Here,we isolated a novel GAMYB,named LoMYB65,from lily,which was closely related to the AtMYB65 and AtMYB33 in Arabidopsis.Fluorescence quantitative PCR results showed that LoMYB65 was mainly expressed in lily anthers.LoMYB65 could be activated by 288μmol·L^(-1)GA3treatment and the LoMYB65 protein was located in the nucleus and cytoplasm,and had transactivation in yeast and tobacco leaf cells.The conserved motif within 226 amino acids of the C-terminal of LoMYB65 contributed to its transactivation.Overexpression of LoMYB65 caused dwarf phenotype,unnormal tapetum development,less seeds of siliques in transgenic Arabidopsis plants,the transgenic plants showed partly male sterile.Simultaneously,silencing of LoMYB65 with VIGS(Virus Induced Gene Silencing)in lily anthers caused unnormal pollen development and reduced the pollen amount.Overexpression of LoMYB65 in Arabidopsis and silencing of LoMYB65 in lily resulted in decreased pollen counts,so we speculate that LoMYB65 may be dose-dependent.Overall,these findings suggest that LoMYB65 may play an important role in anther development and pollen formation in lily.LoMYB65 may provide a useful candidate gene for pollenless breeding of lily.
文摘Teacher evaluations intend to cultivate quality among teachers. However, since they are traditionally dependent on observers and their reports that are likely biased, the procedures probably effectuate discords among the calling-teaching professionals. An evaluation procedure that can ascertain fairness in the decisions about teacher retentions, terminations, promotions, and sanctions can capture the accordance of all teachers and teacher facilitators. This paper identifies the possibility of such an evaluation system that is built upon the existing value-added methods. Drawing upon the observations and recommendations by Chetty, Friedman, and Rockoff (2012) on value-added methods of evaluation, and considering the uniqueness of ELTs (English Language Teachers) as it was observed by Borg (2006) and Lee (2010), this paper describes the application of the value-added evaluation method, in gauging the quality of ELTs. The paper further explicates the vantages and conformities embodied in the procedure that could boost up the morale of ELTs as independent professionals of a creative art, and help them perform to their fullest potential
基金supported by the National Natural Science Foundation of China (22008098, 21978156, 42002040)the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (21IRTSTHN004)+1 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (22HASTIT008)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2022-K34)。
文摘Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons.
文摘This article introduces the Push-to-talk over Cellular( PoC) service, a new mobile value-added service based on the IP Multimedia Subsystem (IMS). Its implementation scheme is discussed and its Session Initiation Protocol (SIP) signaling exchange flow is described. Target user groups are predicted based on the analysis of the strengths and weaknesses of the PoC service. The article purports that the PoC system could undoubtedly be used as a platform for new services such as multimedia messaging, instant messaging, presence, and picture receiving and sending. Just like the short message service, the PoC service will help the terminal vendors, equipment vendors, content providers and operators setup a win-for-all industrial value chain.
基金Project of the National Natural Sciences Foundation"Study on Trade,Investment and Industrial Relocation Based on Value Chain for the Belt and Road Initiative"(Approval No.71441039)
文摘Estimation of domestic and overseas value-added of manufacturing sector is an important and difficult subject for the science-based evaluation of a country's trade interests under global value chain. Traditional HIY approach overestimates the domestic value- added of export. Although Koopman's method made certain improvements, it cannot utilize traditional I/O matrix and direct input coefficient matrix under the condition of incomplete information. By creating GAMS model, this paper addresses the above-mentioned problems and employs an improved model for the estimation of variations in domestic and overseas value-added of Chinese exports between 2002 and 2012. Our results indicate that by neglecting the export of processing trade, HIY approach overestimates the domestic value- added ratio of Chinese exports. As more imported intermediate inputs have been used in the export of processing trade, the estimation result of this paper have corrected deviations in the forecast of overseas value-added ratio and its tendencies based on HIY method Further analysis of specific factors of domestic value-added of export led to the discovery that the domestic value-added of export of processing trade and mixed trade is highly vulnerable to the impact of international capital inflow. It can be seen that the improved method for the estimation of value-added has indeed corrected the deviations in the estimation of China's value-added. In conclusion, China should accelerate the development of export of non- processing trade and trade in high-end services, and balance the relationship of export between local firms and foreign-funded firms, with a view to improving trade dependence and increasing the trade status of Chinese manufaeturing firms in global value chain.
基金This work was supported by the National Natural Science Foundation of China(71861147003 and 71925009).
文摘This paper examines the nutrition impacts of using non-solid cooking fuel on under-five children in developing countries.We draw on data from more than 1.12 million children in 62 developing countries from the Demographic and Health Surveys(DHS).Results from both fixed effects(FE)and instrumental variable(IV)estimates show that using non-solid cooking fuel significantly improves the nutrition outcomes of under-five children.Compared with their peers from households mainly using solid fuel,children from households mainly using non-solid fuel exhibit a lower probability of experiencing stunting(by 5.9 percentage points)and being underweight(by 1.2 percentage points).Our further investigation provides evidence for several underlying mechanisms,such as improved indoor air quality,induced reduction in children’s respiratory symptoms,benefits on maternal health,and reduction in maternal time spent on fuel collection or cooking.Heterogenous analyses suggest that the nutrition benefits of using non-solid cooking fuel are more prominent among boys,children above three years old,and those from households of lower socioeconomic status,rural areas,and Southeast Asia.
基金Key Project of National Social Sciences Foundation"Transition and Upgrade of China’s Economic Structure under Global Value Chain"(11 AZD 002)Project of China Postdoctoral Science Foundation"Study on the Promotional Effect of Trade in Services on the Improvement of Status of China’s Yangtze River Delta Region in International Division of Labor"(Approval No.2013 M530809)
文摘Based on trade in value-added, this paper has estimated the revealed comparative advantage (RCA) of China's various manufacturing sectors between 1995 and 2011 and compared with the RCA indexes measured using conventional aggregate accounting approach. Results indicate that: (1) the RCA index measured using conventional aggregate accounting approach has underestimated China's comparative advantage of labor-intensive sectors but overestimated China's comparative advantage in capital, knowledge and technology-intensive manufacturing sectors, giving rise to a serious misjudgment. (2) The RCA measured using value-added approach shows that in the industry chain layout of global manufacturing sectors, China's comparative advantage is still concentrated in labor-intensive manufacturing sectors but has signs of weakening; in capital, knowledge and technology-intensive sectors, China is yet to develop any significant comparative advantage; there are signs that China is developing comparative advantage in capital-intensive sectors yet China's comparative disadvantage in knowledge and technology-intensive sectors has no significant tendency to improve. This result not only helps correct the misjudgment of China's competitiveness in manufacturing sectors based on conventional aggregate accounting approach but offers important policy implications for setting strategic directions and policies for China's manufacturing transition and upgrade.
文摘In order to promote the revitalization and development of rural areas and protect the property rights of farmers,it is necessary to explore the reasonable distribution ratio of land value-added income in collective operating construction land.Under the existing land value-added income distribution model,the land value-added income obtained by the government is much greater than that of village collectives,and it is difficult for village collectives and farmers to enjoy greater benefits.This distribution model is not conducive to protecting the property rights of farmers.The results show that there was a positive correlation between land value-added income and land level,that is,the higher the land level was,the higher the value-added income and its ratio to the market transaction price were.According to calculation,the reasonable distribution ratio of the value-added income of collective operating construction land entering the market among the government,village collectives and farmers was 28.6%,51.1%,and 20.3%respectively.The actual land value-added income obtained by farmers was greatly improved compared with the current situation.In actual operation,this distribution mode has universal applicability.The reform of entering the market in the future also needs to raise the standards for entering the market,explore diversified interest protection channels,and strengthen the construction of rural collective management system.
文摘The comprehensive benefit evaluation of the existing building energy efficient renovation project cannot be separated from the scientific and effective evaluation mechanism.Based on the value-added life perspective,this paper analyzes the implementation subject,standard,system and principle of the comprehensive benefit evaluation of the existing building energy efficient renovation project.It plans the process of comprehensive benefit evaluation,and builds a scientific and reasonable operation platform of evaluation system,with a view to promoting the effective implementation of the comprehensive benefit evaluation of existing building energy-saving retrofits.
文摘This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.