The Qinghai–Tibet plateau is a composite continental fragment formed by collision of multiple terranes and island arcs.The Lhasa terrane,which is located in the central part of the plateau,is bounded by the Yarlung–...The Qinghai–Tibet plateau is a composite continental fragment formed by collision of multiple terranes and island arcs.The Lhasa terrane,which is located in the central part of the plateau,is bounded by the Yarlung–Zangbo suture to the south and Bangong-Nujiang suture to the north.An E–W–trending belt of(ultra)-high pressure eclogite was discovered in the Sumdo region of the Lhasa terrane.Careful field studies combined with petrological,geochemical and isotopic analyses show that the Sumdo eclogites mark a Carboniferous–Permian suture zone,at least 100 km long,containing ophiolite fragments,eclogites and Indosinian post–orogenic granitoids.This suture divides the Lhasa block into a northern and southern segment.Sumdo eclogite occurs about 200 km east of Lhasa city,and extends over 100km in an E–W direction.Sumdo eclogites were accompanied by garnet amphibolite and plagioclaseamphiboliteformedbyretrograde metamorphism of the eclogites.The eclogites were derived from oceanic basalts.LA–ICPMS U–Pb dating of zircon from the Sumdo eclogites indicates a Permian metamorphic age(260–270 Ma)and a Carboniferous protolith age of 303±4.8 MaThe ophiolite fragments in the Sumdo suture zone are composed of the ultramafic rocks,MORB–type basalt,OIB–type basalt and island arc basaltic andesite,some of which are intruded by post-collisional granites.The ultramafic body,a typical tectonic block in the suture zone,is completely serpentinized.Its geochemical features suggest that it is composed of harzburgite,typical of depleted mantle peridotite.The MORB and OIB–type basalts crop out in the Chasagang Formation,and the basaltic andesite crops out in the Leilongku Formation,both of which make up the Sumdo Group.Zircons from the OIB–type basalt with typical magmatic characteristics yield an average U–Pb age of306(95%)Ma,suggesting formation in a Paleo–Tethyan basin in the Carboniferous.U–Pb dating of zircon from the basaltic andesites yielded a concordant age of 265±3.1Ma,similar to the metamorphic age(266–270 Ma)of the eclogites,suggesting formation during subduction of the oceanic crust.Indosinian granodiorite with an age of194±4.3 Ma crops out north of the Sumdo suture.These granodiorites are similar to the late Indochina granites in the Lhasa block,and most likely formed during continent-arc collision or during closure of the Paleo-Tethyan Ocean.A four–stage model for the evolution of the Sumdo Paleo–Tethyan suture is proposed:1)From the Ordovician to the Devonian Gondwanaland was part of an epicontinental sea;2)In the Carboniferous,continental rifting produced a local basin,which then evolved into a Paleo-Tethyan ocean basin,dividing the Lhasa block into two segments;3)From the Permian to the early Triassic,Paleo-Tethyan oceanic crust was subducted northward and;4)In the middle Triassic and early Jurassic,the two fragments collided to form the modern Lhasa block.展开更多
Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating,in vitro,tissues with more authentic properties.Cell clusters call...Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating,in vitro,tissues with more authentic properties.Cell clusters called spheroids are the basis for scaffold-free tissue engineering.In this review,we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues.Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis,and are capable of spontaneously fusing to other spheroids,making them ideal building blocks for bone and cartilage tissue engineering.Here,we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro.Overall,recent studies support the notion that spheroids are ideal"building blocks"for tissue engineering by“bottom-up”approaches,which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting.Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.展开更多
文摘The Qinghai–Tibet plateau is a composite continental fragment formed by collision of multiple terranes and island arcs.The Lhasa terrane,which is located in the central part of the plateau,is bounded by the Yarlung–Zangbo suture to the south and Bangong-Nujiang suture to the north.An E–W–trending belt of(ultra)-high pressure eclogite was discovered in the Sumdo region of the Lhasa terrane.Careful field studies combined with petrological,geochemical and isotopic analyses show that the Sumdo eclogites mark a Carboniferous–Permian suture zone,at least 100 km long,containing ophiolite fragments,eclogites and Indosinian post–orogenic granitoids.This suture divides the Lhasa block into a northern and southern segment.Sumdo eclogite occurs about 200 km east of Lhasa city,and extends over 100km in an E–W direction.Sumdo eclogites were accompanied by garnet amphibolite and plagioclaseamphiboliteformedbyretrograde metamorphism of the eclogites.The eclogites were derived from oceanic basalts.LA–ICPMS U–Pb dating of zircon from the Sumdo eclogites indicates a Permian metamorphic age(260–270 Ma)and a Carboniferous protolith age of 303±4.8 MaThe ophiolite fragments in the Sumdo suture zone are composed of the ultramafic rocks,MORB–type basalt,OIB–type basalt and island arc basaltic andesite,some of which are intruded by post-collisional granites.The ultramafic body,a typical tectonic block in the suture zone,is completely serpentinized.Its geochemical features suggest that it is composed of harzburgite,typical of depleted mantle peridotite.The MORB and OIB–type basalts crop out in the Chasagang Formation,and the basaltic andesite crops out in the Leilongku Formation,both of which make up the Sumdo Group.Zircons from the OIB–type basalt with typical magmatic characteristics yield an average U–Pb age of306(95%)Ma,suggesting formation in a Paleo–Tethyan basin in the Carboniferous.U–Pb dating of zircon from the basaltic andesites yielded a concordant age of 265±3.1Ma,similar to the metamorphic age(266–270 Ma)of the eclogites,suggesting formation during subduction of the oceanic crust.Indosinian granodiorite with an age of194±4.3 Ma crops out north of the Sumdo suture.These granodiorites are similar to the late Indochina granites in the Lhasa block,and most likely formed during continent-arc collision or during closure of the Paleo-Tethyan Ocean.A four–stage model for the evolution of the Sumdo Paleo–Tethyan suture is proposed:1)From the Ordovician to the Devonian Gondwanaland was part of an epicontinental sea;2)In the Carboniferous,continental rifting produced a local basin,which then evolved into a Paleo-Tethyan ocean basin,dividing the Lhasa block into two segments;3)From the Permian to the early Triassic,Paleo-Tethyan oceanic crust was subducted northward and;4)In the middle Triassic and early Jurassic,the two fragments collided to form the modern Lhasa block.
基金the Coordination for the Improvement of Higher Education Personnel(CAPES),No.88882.366181/2019-01the Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro(FAPERJ),No.E-26/202.682/2018National Council for Scientific and Technological Development(CNPq),No.467513/2014-7
文摘Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating,in vitro,tissues with more authentic properties.Cell clusters called spheroids are the basis for scaffold-free tissue engineering.In this review,we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues.Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis,and are capable of spontaneously fusing to other spheroids,making them ideal building blocks for bone and cartilage tissue engineering.Here,we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro.Overall,recent studies support the notion that spheroids are ideal"building blocks"for tissue engineering by“bottom-up”approaches,which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting.Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.