Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-li...Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.展开更多
The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and contin...The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.展开更多
In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting t...In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting the cargo of proteins,lipids,and other molecules to appropriate compartments via transport vesicles or intermediates.These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain(RAB)protein family,which is the largest subfamily of the RAS superfamily.Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases,including neurological disorders and neurodegenerative diseases.Therefore,it is important to understand the physiological and pathological roles of RAB proteins in brain function.RAB35,a member of the RAB family,is an evolutionarily conserved protein in metazoans.A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis,endocytic recycling,actin bundling,and cell migration.RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles.We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function.These mice exhibited defects in anxiety-related behaviors and spatial memory.Strikingly,RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development,and thereby for normal hippocampal lamination.In contrast,layer formation in the cerebral cortex occurred superficially,even in the absence of RAB35,suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development.Recent studies have suggested an association between RAB35 and neurodegenerative diseases,including Parkinson's disease and Alzheimer's disease.In this review,we provide an overview of the current understanding of subcellular functions of RAB35.We also provide insights into the physiological role of RAB35 in mammalian brain development and function,and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.展开更多
Given the rapid development of China’s new urbanization,cities with different locations and varying functional positioning,resource endowments,and development stages have insufficient scientific and applicable techni...Given the rapid development of China’s new urbanization,cities with different locations and varying functional positioning,resource endowments,and development stages have insufficient scientific and applicable technical tools for implementing the United Nations Sustainable Development Goals(SDGs).City managers and policymakers must urgently establish SDG benchmarks to diagnose city development.Moreover,successful experiences from similar cities regarding sustainable development and self-improvement must be learned from to promote diversified,sustainable development across the country.Furthermore,emerging technologies such as artificial intelligence,the Internet of Things,big data and 5G are widely used in smart cities.Therefore,there is a growing need for“knowledge-based,personalized and intelligent”technologies to support monitoring,evaluation,and decision-making processes facilitating sustainable development in cities.This paper uses standardization as the theoretical support and technical basis.This approach can help clarify the sustainable development processes in China and clarify the evaluation results of and provide data on horizontal city comparisons,which can be used to develop evaluation technology for sustainable development in cities and construct a standardized system.The results provide a standard framework for intelligent assessment and decision-making regarding cities’sustainable development capabilities in China.Evaluating major international standardization institutions reveals that the practices of Chinese national standards should be fully absorbed and integrated to guide the evaluation of smart,resilient,and low-carbon cities.To this end,an indicator library of city sustainable development is proposed to provide standard evaluation technology methods.Finally,analyzing the response relationship of the indicator library to SDGs reveals the need for a standardized knowledge map of sustainable development assessment techniques and methods from the perspective of integrated management for sustainable development in cities.展开更多
A novel, simple, and sensitive Ultra Performance Liquid Chromatography (UPLC) method was developed and validated for the quantification of process-related impurities and degradants, as well as the assay of Docetaxel. ...A novel, simple, and sensitive Ultra Performance Liquid Chromatography (UPLC) method was developed and validated for the quantification of process-related impurities and degradants, as well as the assay of Docetaxel. The stability-indicating capability of the method was demonstrated through forced degradation studies and a comprehensive mass balance evaluation. Chromatographic separation was achieved using an ACQUITY UPLC BEH C18 column (100 × 2.1 mm, 1.7 µm), with gradient elution. The mobile phase A comprised a mixture of water, methanol, and acetonitrile (500:300:200, v/v/v), while mobile phase B was acetonitrile and water (800:200, v/v). The flow rate was set at 0.4 mL/min, with detection at 232 nm using a photodiode array detector. The method exhibited excellent performance, with a tailing factor of 1.10 for Docetaxel. The method was rigorously validated for precision, accuracy, linearity, LOD, LOQ, ruggedness, specificity, and robustness. Forced degradation studies confirmed the method’s suitability for stability analysis. Stability testing on the drug substance was conducted following ICH guidelines.展开更多
Litchi (Litchi chinensis Sonn.) is a well-known tropical and subtropical woody fruit that originated from southern China (Wei et al.,2017;Hu et al.,2022).Based on the development of the embryo,litchi varieties can be ...Litchi (Litchi chinensis Sonn.) is a well-known tropical and subtropical woody fruit that originated from southern China (Wei et al.,2017;Hu et al.,2022).Based on the development of the embryo,litchi varieties can be divided into three distinct groups:large-seeded cultivars,small (abortive)-seeded cultivars and partial abortive-seeded cultivars.Seedless or the reduction in seed size due to embryo abortion is a desirable trait in fruit trees as it directly influences the texture and economic value of fleshy fruits,making small (abortive)-seeded litchi cultivars the most preferred.However,in current production practices,there is no efficient method available to induce or promote high seed abortion in litchi fruit.Therefore,understanding the stenospermy mechanisms of litchi seed development is of great significance for improving agricultural practices and managing genetic resources.展开更多
This study examines the transformative role of self-help groups(SHGs)in the socioeconomic development of rural women in Cooch Behar District,India,and their contribution toward achieving Sustainable Development Goals(...This study examines the transformative role of self-help groups(SHGs)in the socioeconomic development of rural women in Cooch Behar District,India,and their contribution toward achieving Sustainable Development Goals(SDGs)of the United Nations.In this study,we explored the effect of SHGs on rural women by specifically addressing SDGs,such as no poverty(SDG 1),zero hunger(SDG 2),good health and well-being(SDG 3),quality education(SDG 4),and gender equality(SDG 5).Given this issue,a cross-sectional survey and comparison analyses are needed to assess the socioeconomic development of rural women and their awareness level before and after the participation of rural women in SHGs.The survey conducted as part of this study was divided into three sections,namely,demographic characteristics,socioeconomic development,and awareness level,with each focusing on different aspects.A group of 400 individuals who were part of SHGs completed the questionnaire survey form.The results showed that the participation of rural women in SHGs significantly improved their socioeconomic development and awareness level,as supported by both mean values and t test results.Memberships in SHGs and microcredit programs were the major elements that boosted the socioeconomic development of rural women,which also achieves SDGs 1,2,3,4,and 5.This study revealed that participation in SHGs and related financial services significantly aided rural women in economically disadvantaged communities in accumulating savings and initiating entrepreneurial ventures.Moreover,participation in SHGs was instrumental in enhancing the self-confidence,self-efficacy,and overall self-esteem of rural women.Finally,doing so enabled them to move more freely for work and other activities and to make family and common decisions.展开更多
With the rapid development of agricultural science and technology,animal husbandry,as an important pillar in the field of agriculture,is gradually moving towards a new era of smart animal husbandry with the deep integ...With the rapid development of agricultural science and technology,animal husbandry,as an important pillar in the field of agriculture,is gradually moving towards a new era of smart animal husbandry with the deep integration of informatization and digitalization.This transformation not only breaks through the traditional production mode of animal husbandry,but also promotes it to a new form under the Internet ecology,draws a new blueprint for the development of agriculture and animal husbandry,and gives birth to numerous potential business opportunities for the development of new agriculture.However,the practice and promotion of smart animal husbandry is not a smooth road,and many challenges and problems need to be solved urgently.On the basis of an in-depth investigation of the development status of smart animal husbandry in Beijing,this paper comprehensively analyzes the current problems,including the difficulty of technology integration,the lack of talent reserve,and the need to improve the policy environment.In view of these problems,it puts forward a series of practical suggestions,in order to speed up the development of animal husbandry in Beijing to the direction of smart development,and realize the sustainable development of animal husbandry.展开更多
Neuropeptides are widely distributed in vertebrates and invertebrates,regulating a variety of physiological activities in the organisms,such as metabolism,feeding and reproduction.In this study,to explore the function...Neuropeptides are widely distributed in vertebrates and invertebrates,regulating a variety of physiological activities in the organisms,such as metabolism,feeding and reproduction.In this study,to explore the function of neuropeptide LFRFamide in Sepia pharaonis,the full-length cDNA of LFRFamide-like gene(named SpLFRFL,MG869822.1)was identified with rapid amplification of cDNA ends(RACE)method.The sequence of SpLFRFL was 860 bp in length and encoded 188 amino acids containing 4 different mature peptides:1 copy of PHTPFRFamide,NSLFRFamide,TIFRFamide,and 3 copies of GNLFRFamide.Multiple alignment and phylogenetic analysis results showed that SpLFRFL shared high identity with LFRFamides of Sepia officinalis and Sepiella japonica and had the closest relationship with them.Through quantitative Real-time PCR(qRT-PCR),it was found that the SpLFRFL gene was highly expressed in the optic lobe and brain at three different stages during gonad development in both genders.Moreover,the four mature peptides at a concentration of 0.01μmol L^(−1) could inhibit the protein synthesis in the Chinese hamster ovary cell strain-K1(CHOK1)induced by SpGnRH.These data suggest that SpLFRFL might be involved in the development and reproduction of S.pharaonis.The results can contribute to future studies on neuropeptide evolution and function and benefit the cuttlefish farming.展开更多
Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fra...Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fractures, remain controversial. In this study, we integrate thin section analysis and microcomputed tomography(CT) data from several lacustrine shale samples from the third member(Es3) of the Shahejie Formation, Qikou Sag, Bohai Bay Basin, to assess the fractures in detail. The goal is to reveal the development characteristics, controlling factors, and geological significance for evaluating sweet spots in a shale oil play. The fractures in the Es3contain high-angle structural and horizontal bed-parallel fractures that are mostly shear and extensional. Various factors influence fracture development,including lithofacies, mineral composition, organic matter content, and the number of laminae. Structural fractures occur predominantly in siltstone, whereas bed-parallel fractures are abundant in laminated shale and layered mudstone. A higher quartz content results in higher shale brittleness, causing fractures, whereas the transformation between clay minerals contributes to the development of bedparallel fractures. Excess pore pressure due to hydrocarbon generation and expulsion during thermal advance can cause the formation of bed-parallel fractures. The density of the bed-parallel and structural fractures increases with the lamina density, and the bed-parallel fractures are more sensitive to the number of laminae. The fractures are critical storage spaces and flow conduits and are indicative of sweet spots. The laminated shale in the Es3with a high organic matter content contains natural fractures and is an organic-rich, liquid-rich, self-sourced shale play. Conversely, the siltstone, massive mudstone, and argillaceous carbonate lithofacies contain lower amounts of organic matter and do not have bed-parallel fractures. However, good reservoirs can form in these areas when structural fractures are present and the source, and storage spaces are separated.展开更多
Poplar is one of the fastest-growing temperate trees in the world and is widely used in ornamental horticulture for shade.The root is essential for tree growth and development and its utilization potential is huge.Cal...Poplar is one of the fastest-growing temperate trees in the world and is widely used in ornamental horticulture for shade.The root is essential for tree growth and development and its utilization potential is huge.Calcium(Ca),as a signaling molecule,is involved in the regulation of plant root development.However,the detailed underlying regulatory mechanism is elusive.In this study,we analyzed the morphological and transcriptomic variations of 84K poplar(Populus alba×P.glandulosa)in response to different calcium concentrations and found that low Ca^(2+)(1 mmol·L^(-1))promoted lateral root development,while deficiency(0.1 mmol·L^(-1)Ca^(2+))inhibited lateral root development.Co-expression analysis showed that Ca^(2+)channel glutamate receptors(GLRs)were present in various modules with significance for root development.Two GLR paralogous genes,PagGLR3.3a and Pag GLR3.3b,were mainly expressed in roots and up-regulated under Ca^(2+)deficiency.The CRISPR/Cas9-mediated signal gene(crispr-PagGLR3.3a,PagGLR3.3b)and double gene(crispr-PagGLR3.3ab)mutants presented more and longer lateral roots.Anatomical analysis showed that crispr-PagGLR3.3ab plants had more xylem cells and promoted the development of secondary vascular tissues.Further transcriptomic analysis suggested that knockout of PagGLR3.3a and PagGLR3.3b led to the up-regulation of several genes related to protein phosphorylation,auxin efflux,lignin and hemicellulose biosynthesis as well as transcriptional regulation,which might contribute to lateral root growth.This study not only provides novel insight into how the Ca^(2+)channels mediated root growth and development in trees,but also provides a directive breeding of new poplar species for biofuel and bioenergy production.展开更多
The number of trichomes significantly increased in CRISPR/Cas9-edited BrrTCP4b turnip(Brassica rapa var.rapa)plants.However,the underlying molecular mechanism remains to be uncovered.In this study,we performed the Y2H...The number of trichomes significantly increased in CRISPR/Cas9-edited BrrTCP4b turnip(Brassica rapa var.rapa)plants.However,the underlying molecular mechanism remains to be uncovered.In this study,we performed the Y2H screen using BrrTCP4b as the bait,which unveiled an interaction between BrrTCP4b and BrrTTG1,a pivotal WD40-repeat protein transcription factor in the MYB-bHLH-WD40(MBW)complex.This physical interaction was further validated through bimolecular luciferase complementation and co-immunoprecipitation.Furthermore,it was found that the interaction between BrrTCP4b and BrrTTG1 could inhibit the activity of MBW complex,resulting in decreased expression of BrrGL2,a positive regulator of trichomes development.In contrast,AtTCP4 is known to regulate trichomes development by interacting with AtGL3 in Arabidopsis thaliana.Overall,this study revealed that BrrTCP4b is involved in trichome development by interacting with BrrTTG1 in turnip,indicating a divergence from the mechanisms observed in model plant A.thaliana.The findings contribute to our understanding of the regulatory mechanisms governing trichome development in the non-model plants turnip.展开更多
The North-East Caucasus is a multi-ethnic mountain macroregion with a rich cultural heritage,insufficiently studied in the context of the ecotourism development.To fill this gap and identify promising directions of en...The North-East Caucasus is a multi-ethnic mountain macroregion with a rich cultural heritage,insufficiently studied in the context of the ecotourism development.To fill this gap and identify promising directions of environmentally safe forms of tourism,the author used in-depth review of modern literature to investigate the features of ecological tourism and the problems of preserving ethno-cultural heritage,and used historical and comparative-geographical methods to analyze the development of the tangible and intangible cultural heritage of the indigenous peoples of the North-Eastern Caucasus in different historical periods and to identify the geographical peculiarities of the distribution of historical and cultural monuments(tower buildings),pilgrimage sites and centers of traditional crafts and trades.As part of the planned expeditions,the author personally visited some historical monuments and handicraft centers for a deeper study of ethno-cultural heritage.The cartographic method made it possible to visualize the results.The results of the research show that the ethnocultural heritage of the North-East Caucasus is formed by material(historical and cultural monuments)and immaterial elements of culture(language,customs,traditions,ethnic identification)of those peoples,who live here.The ethnocultural heritage is considered as the most important factor in the development of the tourism industry.It is revealed that this region has a large potential for development in various areas of eco-tourism.The highest concentration of religious buildings focused in mountainous areas.Medieval tower structures were erected in mountainous and high-altitude areas.From ancient times to the present day there have been preserved various types of crafts and trades(pottery,metalworking,burka making,jewelry making,carpet weaving,gold embroidery,wood and stone carving,etc.),which can become objects of ecotourism.The ethnocultural heritage of the North-East Caucasus needs to be preserved and protected.To solve this problem,the author recommends to focus on a balanced combination of traditions and innovations in this industry,also considering the current state and development of the tourism industry in the country and in the world.The research highlights that the development of scientific approaches to plan and manage tourism development can contribute to the preservation of tangible and intangible cultural heritage of indigenous peoples.This is a complex and labour-intensive task,but its solution will have a multiplier effect in the social sphere,in economic development and in environmental security,which is in line with the principles and concept of sustainable development.展开更多
Drought is a main abiotic stress factor hindering plant growth,development,and crop productivity.Therefore,it is crucial to understand the mechanisms by which plants cope with drought stress.Here,the function of the m...Drought is a main abiotic stress factor hindering plant growth,development,and crop productivity.Therefore,it is crucial to understand the mechanisms by which plants cope with drought stress.Here,the function of the maize peroxidase gene ZmPRX1 in drought stress tolerance was investigated by measurement of its expression in response to drought treatment both in a ZmPRX1 overexpression line and a mutant line.The higher root lignin accumulation and seedling survival rate of the overexpression line than that of the wild type or mutant support a role for ZmPRX1 in maize drought tolerance by regulating root development and lignification.Additionally,yeast one-hybrid,Dule luciferase and ChIP-qPCR assays showed that ZmPRX1 is negatively regulated by a nuclear-localized ZmWRKY86 transcription factor.The gene could potentially be used for breeding of drought-tolerant cultivars.展开更多
Background SRO(Similar to RCD1)genes family is largely recognized for their importance in the growth,develop-ment,and in responding to environmental stresses.However,genome-wide identification and functional character...Background SRO(Similar to RCD1)genes family is largely recognized for their importance in the growth,develop-ment,and in responding to environmental stresses.However,genome-wide identification and functional characteri-zation of SRO genes from cotton species have not been reported so far.Results A total of 36 SRO genes were identified from four cotton species.Phylogenetic analysis divided these genes into three groups with distinct structure.Syntenic and chromosomal distribution analysis indicated uneven distribu-tion of GaSRO,GrSRO,GhSRO,and GbSRO genes on A2,D5 genomes,Gh-At,Gh-Dt,Gb-At,and Gb-Dt subgenomes,respectively.Gene duplication analysis revealed the presence of six duplicated gene pairs among GhSRO genes.In promoter analysis,several elements responsive to the growth,development and hormones were found in GhSRO genes,implying gene induction during cotton growth and development.Several miRNAs responsive to plant growth and abiotic stress were predicted to target 12 GhSRO genes.Organ-specific expression profiling demonstrated the roles of GhSRO genes in one or more tissues.In addition,specific expression pattern of some GhSRO genes dur-ing ovule development depicted their involvement in these developmental processes.Conclusion The data presented in this report laid a foundation for understanding the classification and functions of SRO genes in cotton.展开更多
The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development...The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development Goals(SDGs)are intertwined with the concerted economic and social development of Xinjiang and the objective of achieving shared prosperity within the region.This study established a sustainable development evaluation framework by selecting 15 SDGs and 20 secondary indicators from the United Nations’SDGs.The aim of this study is to quantitatively assess the progress of SDGs at the county(city)level on the northern slope of the Kunlun Mountains.The results indicate that there are substantial variations in the scores of SDGs among the nine counties and one city located on the northern slope of the Kunlun Mountains.Notable high scores of SDGs are observed in the central and eastern regions,whereas lower scores are prevalent in the western areas.The scores of SDGs,in descending order,are as follows:62.22 for Minfeng County,54.22 for Hotan City,50.21 for Qiemo County,42.54 for Moyu County,41.56 for Ruoqiang County,41.39 for Qira County,39.86 for Lop County,38.25 for Yutian County,38.10 for Pishan County,and 36.87 for Hotan County.The performances of SDGs reveal that Hotan City,Lop County,Minfeng County,and Ruoqiang County have significant sustainable development capacity because they have three or more SDGs ranked as green color.However,Hotan County,Moyu County,Qira County,and Yutian County show the poorest performance,as they lack SDGs with green color.It is important to establish and enhance mechanisms that can ensure sustained income growth among poverty alleviation beneficiaries,sustained improvement in the capacity of rural governance,and the gradual improvement of social security system.These measures will facilitate the effective implementation of SDGs.Finally,this study offers a valuable support for governmental authorities and relevant departments in their decision-making processes.In addition,these results hold significant reference value for assessing SDGs at the county(city)level,particularly in areas characterized by low levels of economic development.展开更多
Tyrosine phosphorylation is crucial for controlling normal cell growth,survival,intercellular communication,gene transcription,immune responses,and other processes.protein tyrosine phosphatase(PTP)and protein tyrosine...Tyrosine phosphorylation is crucial for controlling normal cell growth,survival,intercellular communication,gene transcription,immune responses,and other processes.protein tyrosine phosphatase(PTP)and protein tyrosine kinases(PTK)can achieve this goal by regulating multiple signaling pathways.Oedaleus decorus asiaticus is an important pest that infests the Mongolian Plateau grassland.We aimed to evaluate the survival rate,growth rate,overall performance,and ovarian developmental morphology of the 4th instar nymphs of O.decorus asiaticus while inhibiting the activity of protein tyrosine phosphatase-1B(PTP1B)and PTK.In addition,the expression and protein phosphorylation levels of key genes in the MAPK signaling pathway and antioxidant enzyme activity were assessed.The results showed no significant differences in survival rate,growth rate,or overall performance between PTP1B inhibitor treatment and control.However,after PTK inhibitor treatment,these indexes were significantly lower than those in the control.The ovarian size of female larvae after 15 days of treatment with PTK inhibitors showed significantly slower development,while female larvae treated with PTP1B exhibited faster ovarian growth than the control group.In comparison to controls and nymphs treated with PTK inhibitors,the expression and phosphorylation levels of key genes in the MAPK signaling pathway under PTP1B inhibitor treatments were significantly higher in 4th instar nymphs.However,reactiveoxygen(ROS)species levels and the activities of NADPH oxidase and other antioxidant enzymes were considerably reduced,although they were significantly greater in the PTK inhibitor treatment.The results suggest that PTP1B and PTK feedback inhibition in the mitogen-activated-protein kinases(MAPK)signal transfer can regulate the physiological metabolism of the insect as well as its developmental rate.These findings can facilitate future uses of PTP1B and PTK inhibitors in controlling insect development to help control pest populations.展开更多
Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is y...Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is yet unknown the physiological mechanism regulating the complex and dynamic process.This study aimed to clarify how intra-spike hormones,pigments,and assimilates coordinate with each other to regulate spike morphology and then floret primordia development.A two-year field experiment was conducted with two winter wheat genotypes:N50(big-spike with greater NFFs)and SM22(mediumspike with fewer NFFs).We monitored high temporal and spatial-resolution changes in the number and morphology of floret primordia within a spike,as well as in intra-spike hormones,pigments,and assimilates.Our results revealed that the big-spike genotype had more NFFs than the medium-spike genotype,not only because they had more spikelets,but also because they had greater NFFs mainly at central spikelets.More floret primordia at central spikelets had sufficient time to develop and acquire fertile potential during the differentiation phase(167-176 d after sowing,DAS)and the pre-dimorphism phase(179 DAS)for the big-spike genotype than the medium-spike genotype.Floret primordia with fertile morphology during the pre-dimorphism phase always developed into fertile florets during the dimorphism phase.Those early-developed floret primordia most proximal and intermediate to the rachis in the big-spike genotype developed faster than the medium-spike genotype.Correspondingly,the spike dry matter and pigments(chlorophyll a,chlorophyll b,carotene,and carotenoids)content during 170-182 DAS,auxin(IAA)and cytokinin(CTK)content on 167 DAS were significantly higher in the big-spike genotype than in the medium-spike genotype,while jasmonic acid(JA)content was significantly lower in the big-spike genotype compared to the medium-spike genotype during 167-182 DAS.Since the significant differences in intra-spike hormone content of the two genotypes appear earlier than those in dry matter and pigments,we propose a possible model that helped the N50 genotype(big-spike)to form more fertile florets,taking the intra-spike hormone content as a signaling molecule induced assimilates and pigments synthesis,which accelerated the development of more floret primordia during the differentiation phase and then acquired fertile potential during the pre-dimorphism phase,finally improved the NFFs.Our high temporal and spatial-resolution analysis provides an accurate time window for precision cultivation and effective physiological breeding to improve the number of fertile florets in wheat.展开更多
The article focuses on the dissemination and development of Chinese medicine in Pakistan.Religious records show that Chinese medicine was introduced to Pakistan as early as 1,400 years ago,while Hijama(Chinese cupping...The article focuses on the dissemination and development of Chinese medicine in Pakistan.Religious records show that Chinese medicine was introduced to Pakistan as early as 1,400 years ago,while Hijama(Chinese cupping)was used by Prophet Hazrat Muhammad to cure different types of diseases.Exchanges and cooperations between China and Pakistan continue to the present day.Acupuncture and moxibustion therapy,cupping therapy and herbal medicine are practiced with significant merits in today’s Pakistan.In the future,with the proposal of the Belt and Road Initiative and the landmark project of China-Pakistan Economic Corridor,Chinese medicine can be strengthened through cooperations at the herbal medicine trade level,the research and development level,the educational level,and the social association level.展开更多
Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As re...Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As requirement changes continuously,it increases the irrelevancy and redundancy during testing.Due to these challenges;fault detection capability decreases and there arises a need to improve the testing process,which is based on changes in requirements specification.In this research,we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment.The research objective is to identify the most relevant and meaningful requirements through semantic analysis for correct change analysis.Then compute the similarity of requirements through case-based reasoning,which predicted the requirements for reuse and restricted to error-based requirements.Afterward,the apriori algorithm mapped out requirement frequency to select relevant test cases based on frequently reused or not reused test cases to increase the fault detection rate.Furthermore,the proposed model was evaluated by conducting experiments.The results showed that requirement redundancy and irrelevancy improved due to semantic analysis,which correctly predicted the requirements,increasing the fault detection rate and resulting in high user satisfaction.The predicted requirements are mapped into test cases,increasing the fault detection rate after changes to achieve higher user satisfaction.Therefore,the model improves the redundancy and irrelevancy of requirements by more than 90%compared to other clustering methods and the analytical hierarchical process,achieving an 80%fault detection rate at an earlier stage.Hence,it provides guidelines for practitioners and researchers in the modern era.In the future,we will provide the working prototype of this model for proof of concept.展开更多
基金supported by the National Key R&D Program of China,No.2019YFA0110300(to ZG)the National Natural Science Foundation of China,Nos.81773302(to YF),32070862(to ZG).
文摘Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.
基金supported by the National Natural Science Foundation of China,Nos.81901156(to ZZ),82271200(to ZZ),82171308(to XC)the Fundamental Research Funds for the Central Universities,No.xzy012022035(to ZZ)+1 种基金the Natural Science Foundation of Shaanxi Province,Nos.2021JM-261(to QK),2023-YBSF-303(to ZZ)Traditional Chinese Medicine Project of Shaanxi Province,No.2019-ZZ-JC047(to QK)。
文摘The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.
基金supported by the Japan Society for the Promotion of Science KAKENHI(grant Nos.23K05678 to IM,19H05711 and 20H00466 to KS)the Joint Research Program of Institute for Molecular and Cellular Regulation,Gunma University(to KS)。
文摘In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting the cargo of proteins,lipids,and other molecules to appropriate compartments via transport vesicles or intermediates.These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain(RAB)protein family,which is the largest subfamily of the RAS superfamily.Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases,including neurological disorders and neurodegenerative diseases.Therefore,it is important to understand the physiological and pathological roles of RAB proteins in brain function.RAB35,a member of the RAB family,is an evolutionarily conserved protein in metazoans.A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis,endocytic recycling,actin bundling,and cell migration.RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles.We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function.These mice exhibited defects in anxiety-related behaviors and spatial memory.Strikingly,RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development,and thereby for normal hippocampal lamination.In contrast,layer formation in the cerebral cortex occurred superficially,even in the absence of RAB35,suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development.Recent studies have suggested an association between RAB35 and neurodegenerative diseases,including Parkinson's disease and Alzheimer's disease.In this review,we provide an overview of the current understanding of subcellular functions of RAB35.We also provide insights into the physiological role of RAB35 in mammalian brain development and function,and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.
基金supported by the National Key Research and Development Program of China under the theme“Research on urban sustainable development interactive decision-making and management technologies”[Grant No.2022YFC3802904].
文摘Given the rapid development of China’s new urbanization,cities with different locations and varying functional positioning,resource endowments,and development stages have insufficient scientific and applicable technical tools for implementing the United Nations Sustainable Development Goals(SDGs).City managers and policymakers must urgently establish SDG benchmarks to diagnose city development.Moreover,successful experiences from similar cities regarding sustainable development and self-improvement must be learned from to promote diversified,sustainable development across the country.Furthermore,emerging technologies such as artificial intelligence,the Internet of Things,big data and 5G are widely used in smart cities.Therefore,there is a growing need for“knowledge-based,personalized and intelligent”technologies to support monitoring,evaluation,and decision-making processes facilitating sustainable development in cities.This paper uses standardization as the theoretical support and technical basis.This approach can help clarify the sustainable development processes in China and clarify the evaluation results of and provide data on horizontal city comparisons,which can be used to develop evaluation technology for sustainable development in cities and construct a standardized system.The results provide a standard framework for intelligent assessment and decision-making regarding cities’sustainable development capabilities in China.Evaluating major international standardization institutions reveals that the practices of Chinese national standards should be fully absorbed and integrated to guide the evaluation of smart,resilient,and low-carbon cities.To this end,an indicator library of city sustainable development is proposed to provide standard evaluation technology methods.Finally,analyzing the response relationship of the indicator library to SDGs reveals the need for a standardized knowledge map of sustainable development assessment techniques and methods from the perspective of integrated management for sustainable development in cities.
文摘A novel, simple, and sensitive Ultra Performance Liquid Chromatography (UPLC) method was developed and validated for the quantification of process-related impurities and degradants, as well as the assay of Docetaxel. The stability-indicating capability of the method was demonstrated through forced degradation studies and a comprehensive mass balance evaluation. Chromatographic separation was achieved using an ACQUITY UPLC BEH C18 column (100 × 2.1 mm, 1.7 µm), with gradient elution. The mobile phase A comprised a mixture of water, methanol, and acetonitrile (500:300:200, v/v/v), while mobile phase B was acetonitrile and water (800:200, v/v). The flow rate was set at 0.4 mL/min, with detection at 232 nm using a photodiode array detector. The method exhibited excellent performance, with a tailing factor of 1.10 for Docetaxel. The method was rigorously validated for precision, accuracy, linearity, LOD, LOQ, ruggedness, specificity, and robustness. Forced degradation studies confirmed the method’s suitability for stability analysis. Stability testing on the drug substance was conducted following ICH guidelines.
基金supported by grants from the Laboratory of Lingnan Modern Agriculture Project (Grant No.NZ NT2021004)China Litchi and Longan Industry Technology Research System (Grant No.CARS-32-07)。
文摘Litchi (Litchi chinensis Sonn.) is a well-known tropical and subtropical woody fruit that originated from southern China (Wei et al.,2017;Hu et al.,2022).Based on the development of the embryo,litchi varieties can be divided into three distinct groups:large-seeded cultivars,small (abortive)-seeded cultivars and partial abortive-seeded cultivars.Seedless or the reduction in seed size due to embryo abortion is a desirable trait in fruit trees as it directly influences the texture and economic value of fleshy fruits,making small (abortive)-seeded litchi cultivars the most preferred.However,in current production practices,there is no efficient method available to induce or promote high seed abortion in litchi fruit.Therefore,understanding the stenospermy mechanisms of litchi seed development is of great significance for improving agricultural practices and managing genetic resources.
文摘This study examines the transformative role of self-help groups(SHGs)in the socioeconomic development of rural women in Cooch Behar District,India,and their contribution toward achieving Sustainable Development Goals(SDGs)of the United Nations.In this study,we explored the effect of SHGs on rural women by specifically addressing SDGs,such as no poverty(SDG 1),zero hunger(SDG 2),good health and well-being(SDG 3),quality education(SDG 4),and gender equality(SDG 5).Given this issue,a cross-sectional survey and comparison analyses are needed to assess the socioeconomic development of rural women and their awareness level before and after the participation of rural women in SHGs.The survey conducted as part of this study was divided into three sections,namely,demographic characteristics,socioeconomic development,and awareness level,with each focusing on different aspects.A group of 400 individuals who were part of SHGs completed the questionnaire survey form.The results showed that the participation of rural women in SHGs significantly improved their socioeconomic development and awareness level,as supported by both mean values and t test results.Memberships in SHGs and microcredit programs were the major elements that boosted the socioeconomic development of rural women,which also achieves SDGs 1,2,3,4,and 5.This study revealed that participation in SHGs and related financial services significantly aided rural women in economically disadvantaged communities in accumulating savings and initiating entrepreneurial ventures.Moreover,participation in SHGs was instrumental in enhancing the self-confidence,self-efficacy,and overall self-esteem of rural women.Finally,doing so enabled them to move more freely for work and other activities and to make family and common decisions.
基金Supported by College Students Research Training Program of Beijing University of Agriculture.
文摘With the rapid development of agricultural science and technology,animal husbandry,as an important pillar in the field of agriculture,is gradually moving towards a new era of smart animal husbandry with the deep integration of informatization and digitalization.This transformation not only breaks through the traditional production mode of animal husbandry,but also promotes it to a new form under the Internet ecology,draws a new blueprint for the development of agriculture and animal husbandry,and gives birth to numerous potential business opportunities for the development of new agriculture.However,the practice and promotion of smart animal husbandry is not a smooth road,and many challenges and problems need to be solved urgently.On the basis of an in-depth investigation of the development status of smart animal husbandry in Beijing,this paper comprehensively analyzes the current problems,including the difficulty of technology integration,the lack of talent reserve,and the need to improve the policy environment.In view of these problems,it puts forward a series of practical suggestions,in order to speed up the development of animal husbandry in Beijing to the direction of smart development,and realize the sustainable development of animal husbandry.
基金supported by the National Natural Science Foundation of China(No.31872547)the Natural Science Foundation of Zhejiang Province,China(No.LY20 C190007)+1 种基金the Open Foundation from Marine Sciences in the First-Class Subjects of Zhejiang(No.OFMS004)the Excellent Postdoctoral Program of Jiangsu Province(No.314865).
文摘Neuropeptides are widely distributed in vertebrates and invertebrates,regulating a variety of physiological activities in the organisms,such as metabolism,feeding and reproduction.In this study,to explore the function of neuropeptide LFRFamide in Sepia pharaonis,the full-length cDNA of LFRFamide-like gene(named SpLFRFL,MG869822.1)was identified with rapid amplification of cDNA ends(RACE)method.The sequence of SpLFRFL was 860 bp in length and encoded 188 amino acids containing 4 different mature peptides:1 copy of PHTPFRFamide,NSLFRFamide,TIFRFamide,and 3 copies of GNLFRFamide.Multiple alignment and phylogenetic analysis results showed that SpLFRFL shared high identity with LFRFamides of Sepia officinalis and Sepiella japonica and had the closest relationship with them.Through quantitative Real-time PCR(qRT-PCR),it was found that the SpLFRFL gene was highly expressed in the optic lobe and brain at three different stages during gonad development in both genders.Moreover,the four mature peptides at a concentration of 0.01μmol L^(−1) could inhibit the protein synthesis in the Chinese hamster ovary cell strain-K1(CHOK1)induced by SpGnRH.These data suggest that SpLFRFL might be involved in the development and reproduction of S.pharaonis.The results can contribute to future studies on neuropeptide evolution and function and benefit the cuttlefish farming.
基金financially supported by the CNPC Prospective Basic Science and Technology Special Project(2023ZZ08)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX050103)。
文摘Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fractures, remain controversial. In this study, we integrate thin section analysis and microcomputed tomography(CT) data from several lacustrine shale samples from the third member(Es3) of the Shahejie Formation, Qikou Sag, Bohai Bay Basin, to assess the fractures in detail. The goal is to reveal the development characteristics, controlling factors, and geological significance for evaluating sweet spots in a shale oil play. The fractures in the Es3contain high-angle structural and horizontal bed-parallel fractures that are mostly shear and extensional. Various factors influence fracture development,including lithofacies, mineral composition, organic matter content, and the number of laminae. Structural fractures occur predominantly in siltstone, whereas bed-parallel fractures are abundant in laminated shale and layered mudstone. A higher quartz content results in higher shale brittleness, causing fractures, whereas the transformation between clay minerals contributes to the development of bedparallel fractures. Excess pore pressure due to hydrocarbon generation and expulsion during thermal advance can cause the formation of bed-parallel fractures. The density of the bed-parallel and structural fractures increases with the lamina density, and the bed-parallel fractures are more sensitive to the number of laminae. The fractures are critical storage spaces and flow conduits and are indicative of sweet spots. The laminated shale in the Es3with a high organic matter content contains natural fractures and is an organic-rich, liquid-rich, self-sourced shale play. Conversely, the siltstone, massive mudstone, and argillaceous carbonate lithofacies contain lower amounts of organic matter and do not have bed-parallel fractures. However, good reservoirs can form in these areas when structural fractures are present and the source, and storage spaces are separated.
基金supported by the National Natural Science Foundation of China(Grant Nos.32371902,31901327)National Key Research and Development Program of China(Grant Nos.2019YFE0119100,2021YFD2200205)+1 种基金Overseas Expertise Introduction Project for Discipline Innovation(111 Project D18008)The researches foundation of Zhejiang A&F University(Grant No.2018FR013)。
文摘Poplar is one of the fastest-growing temperate trees in the world and is widely used in ornamental horticulture for shade.The root is essential for tree growth and development and its utilization potential is huge.Calcium(Ca),as a signaling molecule,is involved in the regulation of plant root development.However,the detailed underlying regulatory mechanism is elusive.In this study,we analyzed the morphological and transcriptomic variations of 84K poplar(Populus alba×P.glandulosa)in response to different calcium concentrations and found that low Ca^(2+)(1 mmol·L^(-1))promoted lateral root development,while deficiency(0.1 mmol·L^(-1)Ca^(2+))inhibited lateral root development.Co-expression analysis showed that Ca^(2+)channel glutamate receptors(GLRs)were present in various modules with significance for root development.Two GLR paralogous genes,PagGLR3.3a and Pag GLR3.3b,were mainly expressed in roots and up-regulated under Ca^(2+)deficiency.The CRISPR/Cas9-mediated signal gene(crispr-PagGLR3.3a,PagGLR3.3b)and double gene(crispr-PagGLR3.3ab)mutants presented more and longer lateral roots.Anatomical analysis showed that crispr-PagGLR3.3ab plants had more xylem cells and promoted the development of secondary vascular tissues.Further transcriptomic analysis suggested that knockout of PagGLR3.3a and PagGLR3.3b led to the up-regulation of several genes related to protein phosphorylation,auxin efflux,lignin and hemicellulose biosynthesis as well as transcriptional regulation,which might contribute to lateral root growth.This study not only provides novel insight into how the Ca^(2+)channels mediated root growth and development in trees,but also provides a directive breeding of new poplar species for biofuel and bioenergy production.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,Pan-Third Pole Environment Study for a Green Silk Road(Pan-TPE)(XDA2004010306)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0502)Science and Technology Program of Xizang Autonomous Region(XZ202001ZY0003G).
文摘The number of trichomes significantly increased in CRISPR/Cas9-edited BrrTCP4b turnip(Brassica rapa var.rapa)plants.However,the underlying molecular mechanism remains to be uncovered.In this study,we performed the Y2H screen using BrrTCP4b as the bait,which unveiled an interaction between BrrTCP4b and BrrTTG1,a pivotal WD40-repeat protein transcription factor in the MYB-bHLH-WD40(MBW)complex.This physical interaction was further validated through bimolecular luciferase complementation and co-immunoprecipitation.Furthermore,it was found that the interaction between BrrTCP4b and BrrTTG1 could inhibit the activity of MBW complex,resulting in decreased expression of BrrGL2,a positive regulator of trichomes development.In contrast,AtTCP4 is known to regulate trichomes development by interacting with AtGL3 in Arabidopsis thaliana.Overall,this study revealed that BrrTCP4b is involved in trichome development by interacting with BrrTTG1 in turnip,indicating a divergence from the mechanisms observed in model plant A.thaliana.The findings contribute to our understanding of the regulatory mechanisms governing trichome development in the non-model plants turnip.
基金The study was supported by grant(project no.23-17-00218“Ecological tourism and recreational nature management in the North-East Caucasus”(https://rscf.ru/project/23-17-00218/))from the Russian Science Foundation.
文摘The North-East Caucasus is a multi-ethnic mountain macroregion with a rich cultural heritage,insufficiently studied in the context of the ecotourism development.To fill this gap and identify promising directions of environmentally safe forms of tourism,the author used in-depth review of modern literature to investigate the features of ecological tourism and the problems of preserving ethno-cultural heritage,and used historical and comparative-geographical methods to analyze the development of the tangible and intangible cultural heritage of the indigenous peoples of the North-Eastern Caucasus in different historical periods and to identify the geographical peculiarities of the distribution of historical and cultural monuments(tower buildings),pilgrimage sites and centers of traditional crafts and trades.As part of the planned expeditions,the author personally visited some historical monuments and handicraft centers for a deeper study of ethno-cultural heritage.The cartographic method made it possible to visualize the results.The results of the research show that the ethnocultural heritage of the North-East Caucasus is formed by material(historical and cultural monuments)and immaterial elements of culture(language,customs,traditions,ethnic identification)of those peoples,who live here.The ethnocultural heritage is considered as the most important factor in the development of the tourism industry.It is revealed that this region has a large potential for development in various areas of eco-tourism.The highest concentration of religious buildings focused in mountainous areas.Medieval tower structures were erected in mountainous and high-altitude areas.From ancient times to the present day there have been preserved various types of crafts and trades(pottery,metalworking,burka making,jewelry making,carpet weaving,gold embroidery,wood and stone carving,etc.),which can become objects of ecotourism.The ethnocultural heritage of the North-East Caucasus needs to be preserved and protected.To solve this problem,the author recommends to focus on a balanced combination of traditions and innovations in this industry,also considering the current state and development of the tourism industry in the country and in the world.The research highlights that the development of scientific approaches to plan and manage tourism development can contribute to the preservation of tangible and intangible cultural heritage of indigenous peoples.This is a complex and labour-intensive task,but its solution will have a multiplier effect in the social sphere,in economic development and in environmental security,which is in line with the principles and concept of sustainable development.
基金supported by the State Key Laboratory of North China Crop Improvement and Regulation(NCCIR2022ZZ-4)the Key Research and Development Projects of Hebei Province(21326319D)。
文摘Drought is a main abiotic stress factor hindering plant growth,development,and crop productivity.Therefore,it is crucial to understand the mechanisms by which plants cope with drought stress.Here,the function of the maize peroxidase gene ZmPRX1 in drought stress tolerance was investigated by measurement of its expression in response to drought treatment both in a ZmPRX1 overexpression line and a mutant line.The higher root lignin accumulation and seedling survival rate of the overexpression line than that of the wild type or mutant support a role for ZmPRX1 in maize drought tolerance by regulating root development and lignification.Additionally,yeast one-hybrid,Dule luciferase and ChIP-qPCR assays showed that ZmPRX1 is negatively regulated by a nuclear-localized ZmWRKY86 transcription factor.The gene could potentially be used for breeding of drought-tolerant cultivars.
文摘Background SRO(Similar to RCD1)genes family is largely recognized for their importance in the growth,develop-ment,and in responding to environmental stresses.However,genome-wide identification and functional characteri-zation of SRO genes from cotton species have not been reported so far.Results A total of 36 SRO genes were identified from four cotton species.Phylogenetic analysis divided these genes into three groups with distinct structure.Syntenic and chromosomal distribution analysis indicated uneven distribu-tion of GaSRO,GrSRO,GhSRO,and GbSRO genes on A2,D5 genomes,Gh-At,Gh-Dt,Gb-At,and Gb-Dt subgenomes,respectively.Gene duplication analysis revealed the presence of six duplicated gene pairs among GhSRO genes.In promoter analysis,several elements responsive to the growth,development and hormones were found in GhSRO genes,implying gene induction during cotton growth and development.Several miRNAs responsive to plant growth and abiotic stress were predicted to target 12 GhSRO genes.Organ-specific expression profiling demonstrated the roles of GhSRO genes in one or more tissues.In addition,specific expression pattern of some GhSRO genes dur-ing ovule development depicted their involvement in these developmental processes.Conclusion The data presented in this report laid a foundation for understanding the classification and functions of SRO genes in cotton.
基金financially supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01B234).
文摘The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development Goals(SDGs)are intertwined with the concerted economic and social development of Xinjiang and the objective of achieving shared prosperity within the region.This study established a sustainable development evaluation framework by selecting 15 SDGs and 20 secondary indicators from the United Nations’SDGs.The aim of this study is to quantitatively assess the progress of SDGs at the county(city)level on the northern slope of the Kunlun Mountains.The results indicate that there are substantial variations in the scores of SDGs among the nine counties and one city located on the northern slope of the Kunlun Mountains.Notable high scores of SDGs are observed in the central and eastern regions,whereas lower scores are prevalent in the western areas.The scores of SDGs,in descending order,are as follows:62.22 for Minfeng County,54.22 for Hotan City,50.21 for Qiemo County,42.54 for Moyu County,41.56 for Ruoqiang County,41.39 for Qira County,39.86 for Lop County,38.25 for Yutian County,38.10 for Pishan County,and 36.87 for Hotan County.The performances of SDGs reveal that Hotan City,Lop County,Minfeng County,and Ruoqiang County have significant sustainable development capacity because they have three or more SDGs ranked as green color.However,Hotan County,Moyu County,Qira County,and Yutian County show the poorest performance,as they lack SDGs with green color.It is important to establish and enhance mechanisms that can ensure sustained income growth among poverty alleviation beneficiaries,sustained improvement in the capacity of rural governance,and the gradual improvement of social security system.These measures will facilitate the effective implementation of SDGs.Finally,this study offers a valuable support for governmental authorities and relevant departments in their decision-making processes.In addition,these results hold significant reference value for assessing SDGs at the county(city)level,particularly in areas characterized by low levels of economic development.
基金the National Key R&D Program of China(2022YFD1400500)the earmarked fund for China Agriculture Research System(CARS-34)the Central Public-interest Scientific Institution Basal Research Fund of China(S2022XM21)。
文摘Tyrosine phosphorylation is crucial for controlling normal cell growth,survival,intercellular communication,gene transcription,immune responses,and other processes.protein tyrosine phosphatase(PTP)and protein tyrosine kinases(PTK)can achieve this goal by regulating multiple signaling pathways.Oedaleus decorus asiaticus is an important pest that infests the Mongolian Plateau grassland.We aimed to evaluate the survival rate,growth rate,overall performance,and ovarian developmental morphology of the 4th instar nymphs of O.decorus asiaticus while inhibiting the activity of protein tyrosine phosphatase-1B(PTP1B)and PTK.In addition,the expression and protein phosphorylation levels of key genes in the MAPK signaling pathway and antioxidant enzyme activity were assessed.The results showed no significant differences in survival rate,growth rate,or overall performance between PTP1B inhibitor treatment and control.However,after PTK inhibitor treatment,these indexes were significantly lower than those in the control.The ovarian size of female larvae after 15 days of treatment with PTK inhibitors showed significantly slower development,while female larvae treated with PTP1B exhibited faster ovarian growth than the control group.In comparison to controls and nymphs treated with PTK inhibitors,the expression and phosphorylation levels of key genes in the MAPK signaling pathway under PTP1B inhibitor treatments were significantly higher in 4th instar nymphs.However,reactiveoxygen(ROS)species levels and the activities of NADPH oxidase and other antioxidant enzymes were considerably reduced,although they were significantly greater in the PTK inhibitor treatment.The results suggest that PTP1B and PTK feedback inhibition in the mitogen-activated-protein kinases(MAPK)signal transfer can regulate the physiological metabolism of the insect as well as its developmental rate.These findings can facilitate future uses of PTP1B and PTK inhibitors in controlling insect development to help control pest populations.
基金funded by the Scientific and Technological Innovation Team Project of Seed Industry for Saline-alkali Tolerant Crop in Hebei Province(23327501D)the National Key Research and Development Program of China(2022YFD2300802,2022YFD1900703)the China Agriculture Research System(CARS-3).
文摘Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is yet unknown the physiological mechanism regulating the complex and dynamic process.This study aimed to clarify how intra-spike hormones,pigments,and assimilates coordinate with each other to regulate spike morphology and then floret primordia development.A two-year field experiment was conducted with two winter wheat genotypes:N50(big-spike with greater NFFs)and SM22(mediumspike with fewer NFFs).We monitored high temporal and spatial-resolution changes in the number and morphology of floret primordia within a spike,as well as in intra-spike hormones,pigments,and assimilates.Our results revealed that the big-spike genotype had more NFFs than the medium-spike genotype,not only because they had more spikelets,but also because they had greater NFFs mainly at central spikelets.More floret primordia at central spikelets had sufficient time to develop and acquire fertile potential during the differentiation phase(167-176 d after sowing,DAS)and the pre-dimorphism phase(179 DAS)for the big-spike genotype than the medium-spike genotype.Floret primordia with fertile morphology during the pre-dimorphism phase always developed into fertile florets during the dimorphism phase.Those early-developed floret primordia most proximal and intermediate to the rachis in the big-spike genotype developed faster than the medium-spike genotype.Correspondingly,the spike dry matter and pigments(chlorophyll a,chlorophyll b,carotene,and carotenoids)content during 170-182 DAS,auxin(IAA)and cytokinin(CTK)content on 167 DAS were significantly higher in the big-spike genotype than in the medium-spike genotype,while jasmonic acid(JA)content was significantly lower in the big-spike genotype compared to the medium-spike genotype during 167-182 DAS.Since the significant differences in intra-spike hormone content of the two genotypes appear earlier than those in dry matter and pigments,we propose a possible model that helped the N50 genotype(big-spike)to form more fertile florets,taking the intra-spike hormone content as a signaling molecule induced assimilates and pigments synthesis,which accelerated the development of more floret primordia during the differentiation phase and then acquired fertile potential during the pre-dimorphism phase,finally improved the NFFs.Our high temporal and spatial-resolution analysis provides an accurate time window for precision cultivation and effective physiological breeding to improve the number of fertile florets in wheat.
基金This research was financed by the grants from the Second Batch of Provincial Curriculum Ideological and Political Teaching Research Projects of Zhejiang Provincial Department of Education in 2022(No.Z.J.H.[2022]51)Zhejiang Educational Science Planning Project(No.2022SCG429)Special Project of Traditional Chinese Medical Culture of Zhejiang Chinese Medical University(No.2022JKZZW07 and 2022JKZZW13).
文摘The article focuses on the dissemination and development of Chinese medicine in Pakistan.Religious records show that Chinese medicine was introduced to Pakistan as early as 1,400 years ago,while Hijama(Chinese cupping)was used by Prophet Hazrat Muhammad to cure different types of diseases.Exchanges and cooperations between China and Pakistan continue to the present day.Acupuncture and moxibustion therapy,cupping therapy and herbal medicine are practiced with significant merits in today’s Pakistan.In the future,with the proposal of the Belt and Road Initiative and the landmark project of China-Pakistan Economic Corridor,Chinese medicine can be strengthened through cooperations at the herbal medicine trade level,the research and development level,the educational level,and the social association level.
文摘Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As requirement changes continuously,it increases the irrelevancy and redundancy during testing.Due to these challenges;fault detection capability decreases and there arises a need to improve the testing process,which is based on changes in requirements specification.In this research,we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment.The research objective is to identify the most relevant and meaningful requirements through semantic analysis for correct change analysis.Then compute the similarity of requirements through case-based reasoning,which predicted the requirements for reuse and restricted to error-based requirements.Afterward,the apriori algorithm mapped out requirement frequency to select relevant test cases based on frequently reused or not reused test cases to increase the fault detection rate.Furthermore,the proposed model was evaluated by conducting experiments.The results showed that requirement redundancy and irrelevancy improved due to semantic analysis,which correctly predicted the requirements,increasing the fault detection rate and resulting in high user satisfaction.The predicted requirements are mapped into test cases,increasing the fault detection rate after changes to achieve higher user satisfaction.Therefore,the model improves the redundancy and irrelevancy of requirements by more than 90%compared to other clustering methods and the analytical hierarchical process,achieving an 80%fault detection rate at an earlier stage.Hence,it provides guidelines for practitioners and researchers in the modern era.In the future,we will provide the working prototype of this model for proof of concept.