A new fully fuzzy linear programming (FFLP) problem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crisp 6-parametric linear programming (LP) ...A new fully fuzzy linear programming (FFLP) problem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crisp 6-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the 6-fuzzy optimal solution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the values of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to illustrate the proposed method.展开更多
To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy gr...To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.展开更多
To study the problems of multi-attribute decision making in which the attribute values are given in the form of linguistic fuzzy numbers and the information of attribute weights are incomplete, a new multi-attribute d...To study the problems of multi-attribute decision making in which the attribute values are given in the form of linguistic fuzzy numbers and the information of attribute weights are incomplete, a new multi-attribute decision making model is presented based on the optimal membership and the relative entropy. Firstly, the definitions of the optimal membership and the relative entropy are given. Secondly, for all alternatives, a set of preference weight vectors are obtained by solving a set of linear programming models whose goals axe all to maximize the optimal membership. Thirdly, a relative entropy model is established to aggregate the preference weight vectors, thus an optimal weight vector is determined. Based on this optimal weight vector, the algorithm of deviation degree minimization is proposed to rank all the alternatives. Finally, a decision making example is given to demonstrate the feasibility and rationality of this new model.展开更多
Industrial structure has been continuously optimized and upgraded with the rapid development of economy in Shandong Province since1980. On the basis of summarizing the changes of industrial structure and employment st...Industrial structure has been continuously optimized and upgraded with the rapid development of economy in Shandong Province since1980. On the basis of summarizing the changes of industrial structure and employment structure in Shandong Province,the coordination between industrial structure and employment structure in Shandong Province was analyzed by using structure deviation degree and coordination coefficient,and some suggestions to promote the coordinated development of industrial structure and employment structure were put forward according to the practical situations of Shandong Province.展开更多
The digital twin-driven performance model provides an attractive option for the warn gas-path faults of the gas turbines.However,three technical difficulties need to be solved:(1)low modeling precision caused by indiv...The digital twin-driven performance model provides an attractive option for the warn gas-path faults of the gas turbines.However,three technical difficulties need to be solved:(1)low modeling precision caused by individual differences between gas turbines,(2)poor solution efficiency due to excessive iterations,and(3)the false alarm and missing alarm brought by the traditional fixed threshold method.This paper proposes a digital twin model-based early warning method for gas-path faults that breaks through the above obstacles from three aspects.Firstly,a novel performance modeling strategy is proposed to make the simulation effect close to the actual gas turbine by fusing the mechanism model and measurement data.Secondly,the idea of controlling the relative accuracy of model parameters is developed.The introduction of an error module to the existing model can greatly shorten the modeling cycle.The third solution focuses on the early warning based on the digital twin model,which self-learns the alarm threshold of the warning feature of gas-path parameters using the kernel density estimation.The proposed method is utilized to analyze actual measured data of LM2500+,and the results verify that the new-built digital model has higher accuracy and better efficiency.The comparisons show that the proposed method shows evident superiority in early warning of performance faults for gas turbines over other methods.展开更多
基金supported by the National Natural Science Foundation of China(71202140)the Fundamental Research for the Central Universities(HUST:2013QN099)
文摘A new fully fuzzy linear programming (FFLP) problem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crisp 6-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the 6-fuzzy optimal solution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the values of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to illustrate the proposed method.
基金This project was supported by the National Natural Science Foundation of China (70671050 70471019)the Key Project of Hubei Provincial Department of Education (D200627005).
文摘To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.
基金supported by the National Natural Science Foundation of China(70771041)Chinese Astronautics SupportTechnology Foundation and the Excellent Youth Project of Hubei Provincial Department of Education(Q20082705)
文摘To study the problems of multi-attribute decision making in which the attribute values are given in the form of linguistic fuzzy numbers and the information of attribute weights are incomplete, a new multi-attribute decision making model is presented based on the optimal membership and the relative entropy. Firstly, the definitions of the optimal membership and the relative entropy are given. Secondly, for all alternatives, a set of preference weight vectors are obtained by solving a set of linear programming models whose goals axe all to maximize the optimal membership. Thirdly, a relative entropy model is established to aggregate the preference weight vectors, thus an optimal weight vector is determined. Based on this optimal weight vector, the algorithm of deviation degree minimization is proposed to rank all the alternatives. Finally, a decision making example is given to demonstrate the feasibility and rationality of this new model.
基金Supported by the"Double Service"Project of Binzhou University in 2017(BZXYSFW201713,BZXYSFW201719)
文摘Industrial structure has been continuously optimized and upgraded with the rapid development of economy in Shandong Province since1980. On the basis of summarizing the changes of industrial structure and employment structure in Shandong Province,the coordination between industrial structure and employment structure in Shandong Province was analyzed by using structure deviation degree and coordination coefficient,and some suggestions to promote the coordinated development of industrial structure and employment structure were put forward according to the practical situations of Shandong Province.
基金co-supported by the National Postdoctoral Program for Innovative Talent(No.BX20180031)。
文摘The digital twin-driven performance model provides an attractive option for the warn gas-path faults of the gas turbines.However,three technical difficulties need to be solved:(1)low modeling precision caused by individual differences between gas turbines,(2)poor solution efficiency due to excessive iterations,and(3)the false alarm and missing alarm brought by the traditional fixed threshold method.This paper proposes a digital twin model-based early warning method for gas-path faults that breaks through the above obstacles from three aspects.Firstly,a novel performance modeling strategy is proposed to make the simulation effect close to the actual gas turbine by fusing the mechanism model and measurement data.Secondly,the idea of controlling the relative accuracy of model parameters is developed.The introduction of an error module to the existing model can greatly shorten the modeling cycle.The third solution focuses on the early warning based on the digital twin model,which self-learns the alarm threshold of the warning feature of gas-path parameters using the kernel density estimation.The proposed method is utilized to analyze actual measured data of LM2500+,and the results verify that the new-built digital model has higher accuracy and better efficiency.The comparisons show that the proposed method shows evident superiority in early warning of performance faults for gas turbines over other methods.