The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this pape...The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions.展开更多
The field of digital audio forensics aims to detect threats and fraud in audio signals.Contemporary audio forensic techniques use digital signal processing to detect the authenticity of recorded speech,recognize speak...The field of digital audio forensics aims to detect threats and fraud in audio signals.Contemporary audio forensic techniques use digital signal processing to detect the authenticity of recorded speech,recognize speakers,and recognize recording devices.User-generated audio recordings from mobile phones are very helpful in a number of forensic applications.This article proposed a novel method for recognizing recording devices based on recorded audio signals.First,a database of the features of various recording devices was constructed using 32 recording devices(20 mobile phones of different brands and 12 kinds of recording pens)in various environments.Second,the audio features of each recording device,such as the Mel-frequency cepstral coefficients(MFCC),were extracted from the audio signals and used as model inputs.Finally,support vector machines(SVM)with fractional Gaussian kernel were used to recognize the recording devices from their audio features.Experiments demonstrated that the proposed method had a 93.4%accuracy in recognizing recording devices.展开更多
Aiming at the stability of the circuit board image in the acquisition process,this paper realizes the accurate registration of the image to be registered and the standard image based on the SIFT feature operator and R...Aiming at the stability of the circuit board image in the acquisition process,this paper realizes the accurate registration of the image to be registered and the standard image based on the SIFT feature operator and RANSAC algorithm.The device detection model and data set are established based on Faster RCNN.Finally,the number of training was continuously optimized,and when the loss function of Faster RCNN converged,the identification result of the device was obtained.展开更多
Underground pipeline networks suffer from severe damage by earth-moving devices due to rapid urbanization.Thus,designing a round-the-clock intelligent surveillance system has become crucial and urgent.In this study,we...Underground pipeline networks suffer from severe damage by earth-moving devices due to rapid urbanization.Thus,designing a round-the-clock intelligent surveillance system has become crucial and urgent.In this study,we develop an acoustic signal-based excavation device recognition system for underground pipeline protection.The front-end hardware system is equipped with an acoustic sensor array,an Analog-to-Digital Converter(ADC)module(ADS1274),and an industrial processor Advanced RISC Machine(ARM)cortex-A8 for signal collection and algorithm implementation.Then,a novel Statistical Time-Frequency acoustic Feature(STFF)is proposed,and a fast Extreme Learning Machine(ELM)is adopted as the classifier.Experiments on real recorded data show that the proposed STFF achieves better discriminative capability than the conventional acoustic cepstrum features.In addition,the surveillance platform is applicable for encountering big data owing to the fast learning speed of ELM.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.61072061the National Science and Technology Major Projects under Grant No.2012ZX03002008the Fundamental Research Funds for the Central Universities under Grant No.2012RC0121
文摘The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions.
基金supported by the Jiangsu University Student Training Program[SJCX19_0529]the research fund of Nanjing Institute of Engineering[CXY201931]the National Natural Science Foundation of China(61871213).
文摘The field of digital audio forensics aims to detect threats and fraud in audio signals.Contemporary audio forensic techniques use digital signal processing to detect the authenticity of recorded speech,recognize speakers,and recognize recording devices.User-generated audio recordings from mobile phones are very helpful in a number of forensic applications.This article proposed a novel method for recognizing recording devices based on recorded audio signals.First,a database of the features of various recording devices was constructed using 32 recording devices(20 mobile phones of different brands and 12 kinds of recording pens)in various environments.Second,the audio features of each recording device,such as the Mel-frequency cepstral coefficients(MFCC),were extracted from the audio signals and used as model inputs.Finally,support vector machines(SVM)with fractional Gaussian kernel were used to recognize the recording devices from their audio features.Experiments demonstrated that the proposed method had a 93.4%accuracy in recognizing recording devices.
文摘Aiming at the stability of the circuit board image in the acquisition process,this paper realizes the accurate registration of the image to be registered and the standard image based on the SIFT feature operator and RANSAC algorithm.The device detection model and data set are established based on Faster RCNN.Finally,the number of training was continuously optimized,and when the loss function of Faster RCNN converged,the identification result of the device was obtained.
基金supported by the National Natural Science Foundation of China(Nos.U1909209 and 61503104)。
文摘Underground pipeline networks suffer from severe damage by earth-moving devices due to rapid urbanization.Thus,designing a round-the-clock intelligent surveillance system has become crucial and urgent.In this study,we develop an acoustic signal-based excavation device recognition system for underground pipeline protection.The front-end hardware system is equipped with an acoustic sensor array,an Analog-to-Digital Converter(ADC)module(ADS1274),and an industrial processor Advanced RISC Machine(ARM)cortex-A8 for signal collection and algorithm implementation.Then,a novel Statistical Time-Frequency acoustic Feature(STFF)is proposed,and a fast Extreme Learning Machine(ELM)is adopted as the classifier.Experiments on real recorded data show that the proposed STFF achieves better discriminative capability than the conventional acoustic cepstrum features.In addition,the surveillance platform is applicable for encountering big data owing to the fast learning speed of ELM.