Ultrasonic vibration-assisted grinding(UVAG)is an effective and promising method for machining of hard-to-cut materials.This article proposed an ultrasonic vibration plate device enabling the longitudinal full-wave an...Ultrasonic vibration-assisted grinding(UVAG)is an effective and promising method for machining of hard-to-cut materials.This article proposed an ultrasonic vibration plate device enabling the longitudinal full-wave and transverse half-wave(L2T1)vibration mode for UVAG.The characteristics of two-dimensional coupled vibration in different directions were analyzed on the basis of apparent elastic method and finite element method.Furthermore,a correction factor was applied to correct the frequency error caused by the apparent elastic method.Finally,the comparative experiments between the conventional creep-feed grinding and UVAG of Inconel 718 nickel-based superalloy were carried out.The results indicate that the apparent elastic method with the correction factor is accurate for the design of plate device under the L2T1 vibration mode.Compared with the conventional creep-feed grinding,the UVAG causes the reduction of grinding force and the improvement of machined surface quality of Inconel 718 nickel-based superalloy.Furthermore,under the current experimental conditions,the optimal ultrasonic vibration amplitude is determined as 6μm,with which the minimum surface roughness is achieved.展开更多
Recent developments in the fields of materials science and engineering technology(mechanical,electrical,biomedical)lay the foundation to design flexible bioelec-tronics with dynamic interfaces,widely used in biomedica...Recent developments in the fields of materials science and engineering technology(mechanical,electrical,biomedical)lay the foundation to design flexible bioelec-tronics with dynamic interfaces,widely used in biomedical/clinical monitoring,stimulation,and characterization.Examples of this technology include body motion and physiological signal monitoring through soft wearable devices,mechanical characterization of biological tissues,skin stimulation using dynamic actuators,and energy harvesting in biomedical implants.Typically,these bioelectronic systems feature thin form factors for enhanced flexibility and soft elastomeric encapsula-tions that provide skin‐compliant mechanics for seamless integration with biological tissues.This review examines the rapid and continuous progress of bioelectronics in the context of design strategies including materials,mechanics,and structure to achieve high performance dynamic interfaces in biomedicine.It concludes with a concise summary and insights into the ongoing opportunities and challenges facing developments of bioelectronics with dynamic interfaces for future applications.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51921003 and 51775275)National Key Laboratory of Science and Technology on Helicopter Transmission(Nanjing University of Aeronautics and Astronautics)(No.HTL-A-20G01)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX20_0179)。
文摘Ultrasonic vibration-assisted grinding(UVAG)is an effective and promising method for machining of hard-to-cut materials.This article proposed an ultrasonic vibration plate device enabling the longitudinal full-wave and transverse half-wave(L2T1)vibration mode for UVAG.The characteristics of two-dimensional coupled vibration in different directions were analyzed on the basis of apparent elastic method and finite element method.Furthermore,a correction factor was applied to correct the frequency error caused by the apparent elastic method.Finally,the comparative experiments between the conventional creep-feed grinding and UVAG of Inconel 718 nickel-based superalloy were carried out.The results indicate that the apparent elastic method with the correction factor is accurate for the design of plate device under the L2T1 vibration mode.Compared with the conventional creep-feed grinding,the UVAG causes the reduction of grinding force and the improvement of machined surface quality of Inconel 718 nickel-based superalloy.Furthermore,under the current experimental conditions,the optimal ultrasonic vibration amplitude is determined as 6μm,with which the minimum surface roughness is achieved.
基金National Natural Science Foundation of China,Grant/Award Number:12072057Liaoning Revitalization Talents Program,Grant/Award Number:XLYC2007196+2 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:DUT20RC(3)032National Science Foundation,Grant/Award Number:CMMI1635443National Science Foundation Graduate Research Fellowship,Grant/Award Number:1842165。
文摘Recent developments in the fields of materials science and engineering technology(mechanical,electrical,biomedical)lay the foundation to design flexible bioelec-tronics with dynamic interfaces,widely used in biomedical/clinical monitoring,stimulation,and characterization.Examples of this technology include body motion and physiological signal monitoring through soft wearable devices,mechanical characterization of biological tissues,skin stimulation using dynamic actuators,and energy harvesting in biomedical implants.Typically,these bioelectronic systems feature thin form factors for enhanced flexibility and soft elastomeric encapsula-tions that provide skin‐compliant mechanics for seamless integration with biological tissues.This review examines the rapid and continuous progress of bioelectronics in the context of design strategies including materials,mechanics,and structure to achieve high performance dynamic interfaces in biomedicine.It concludes with a concise summary and insights into the ongoing opportunities and challenges facing developments of bioelectronics with dynamic interfaces for future applications.