AIM: To study the viscoelastic properties of human hepatocytes and hepatocellular carcinoma (HCC) cells under cytoskeletal perturbation, and to further to study the viscoelastic properties and the adhesive properties ...AIM: To study the viscoelastic properties of human hepatocytes and hepatocellular carcinoma (HCC) cells under cytoskeletal perturbation, and to further to study the viscoelastic properties and the adhesive properties of mouse hepatoma cells (HTC) in different cell cycle. METHODS: Micropipette aspiration technique was adopted to measure viscoelastic coefficients and adhesion force to collagen coated surface of the cells. Three kinds of cytoskeleton perturbing agents, colchicines (Col), cytochalasin D (CD) and vinblastine (VBL), were used to treat HCC cells and hepatocytes and the effects of these treatment on cell viscoelastic coefficients were investigated. The experimental results were analyzed with a three-element standard linear solid. Further, the viscoelastic properties of HTC cells and the adhesion force of different cycle HTC cells were also investigated. The synchronous G(1) and S phase cells were achieved through thymine-2-desoryriboside and colchicines sequential blockage method and thymine-2-desoryriboside blockage method respectively. RESULTS: The elastic coefficients, but not viscous coefficient of HCC cells (K(1)=103.6+/-12.6N.m(-2), K(2)=42.5 +/ 10.4N.m(-2), mu=4.5 +/- 1.9Pa.s), were significantly higher than the corresponding value for hepatocytes (K(1)=87.5 +/- 12.1N.m(-2), K(2)=33.3+/-10.3N.m(-2), mu=5.9+/-3.0Pa.s, P【0.01). Upon treatment with CD, the viscoelastic coefficients of both hepatocytes and HCC cells decreased consistently, with magnitudes for the decrease in elastic coefficients of HCC cells (K(1): 68.7 N.m(-2) to 81.7N.m(-2), 66.3% to 78.9%; K(2): 34.5N.m(-2) to 37.1N.m(-2), 81.2% to 87.3%, P【0.001) larger than those for normal hepatocytes (K(1): 42.6N.m(-2) to 49.8N.m(-2), 48.7% to 56.9%; K(2): 17.2N.m(-2) to 20.4N.m(-2), 51.7% to 61.3%, P【0.001). There was a little decrease in the viscous coefficient of HCC cells (2.0 to 3.4Pa.s, 44.4 to 75.6%, P【0.001) than that for hepatocytes (3.0 to 3.9Pa.s, 50.8 to 66.1% P【0.001). Upon treatment with Col and VBL, the elastic coefficients of hepatocytes generally increased or tended to increase while those of HCC cells decreased. HTC cells with 72.1% of G(1) phase and 98.9% of S phase were achieved and high K(1), K(2) value and low mu value were the general characteristics of HTC cells. G(1) phase cells had higher K(1) value and lower mu value than S phase cells had, and G(1) phase HTC cells had stronger adhesive forces ((275.9 +/- 232.8) x 10(-10)N) than S phase cells ((161.2 +/- 120.4) x 10(-10)N, P【0.001). CONCLUSION: The difference in both the pattern and the magnitude of the effect of cytoskeletal perturbing agent on the viscoelastic properties between HCC cells and hepatocytes may reflect differences in the state of the cytoskeleton structure and function and in the sensitivity to perturbing agent treatment between these two types of cells. Change in the viscoelastic properties of cancer cells may affect significantly tumor cell invasion and metastasis as well as interactions between tumor cells and their micro-mechanical environments.展开更多
Neovascularization and angiogenesis in the brain are important physiological processes for normal brain development and repair/regeneration following insults. Integrins are cell surface adhesion receptors mediating im...Neovascularization and angiogenesis in the brain are important physiological processes for normal brain development and repair/regeneration following insults. Integrins are cell surface adhesion receptors mediating important function of cells such as survival, growth and development during tissue organization, differentiation and organogenesis. In this study, we used an integrin-binding array platform to identify the important types of integrins and their binding peptides that facilitate adhesion, growth, development, and vascular-like network formation of rat primary brain microvascular endothelial cells. Brain microvascular endothelial cells were isolated from rat brain on post-natal day 7. Cells were cultured in a custom-designed integrin array system containing short synthetic peptides binding to 16 types of integrins commonly expressed on cells in vertebrates. After 7 days of culture, the brain microvascular endothelial cells were processed for immunostaining with markers for endothelial cells including von Willibrand factor and platelet endothelial cell adhesion molecule. 5-Bromo-2′-dexoyuridine was added to the culture at 48 hours prior to fixation to assess cell proliferation. Among 16 integrins tested, we found that α5β1, αvβ5 and αvβ8 greatly promoted proliferation of endothelial cells in culture. To investigate the effect of integrin-binding peptides in promoting neovascularization and angiogenesis, the binding peptides to the above three types of integrins were immobilized to our custom-designed hydrogel in three-dimensional(3 D) culture of brain microvascular endothelial cells with the addition of vascular endothelial growth factor. Following a 7-day 3 D culture, the culture was fixed and processed for double labeling of phalloidin with von Willibrand factor or platelet endothelial cell adhesion molecule and assessed under confocal microscopy. In the 3 D culture in hydrogels conjugated with the integrin-binding peptide, brain microvascular endothelial cells formed interconnected vascular-like network with clearly discernable lumens, which is reminiscent of brain microvascular network in vivo. With the novel integrin-binding array system, we identified the specific types of integrins on brain microvascular endothelial cells that mediate cell adhesion and growth followed by functionalizing a 3 D hydrogel culture system using the binding peptides that specifically bind to the identified integrins, leading to robust growth and lumenized microvascular-like network formation of brain microvascular endothelial cells in 3 D culture. This technology can be used for in vitro and in vivo vascularization of transplants or brain lesions to promote brain tissue regeneration following neurological insults.展开更多
INTRODUCTIONSialyl Lewis-X antigen ,correlated with carcinoma, is a group of carbohydrate antigen containing oligosaccharide expressed of embryonic tisue and glycoproteins on cell surface of embryonic tissue[1].The SL...INTRODUCTIONSialyl Lewis-X antigen ,correlated with carcinoma, is a group of carbohydrate antigen containing oligosaccharide expressed of embryonic tisue and glycoproteins on cell surface of embryonic tissue[1].The SLeX antigen located on cell surface is synthesized principally by two enzymes ,al ,3fucosyltransfrease and a2, 3sialyctransferase.In adults ,SLeX antigen is expressed principally on the surfaces of granulocytic cells and some tumor cells .展开更多
基金the National Science Foundation of China,No.39370198
文摘AIM: To study the viscoelastic properties of human hepatocytes and hepatocellular carcinoma (HCC) cells under cytoskeletal perturbation, and to further to study the viscoelastic properties and the adhesive properties of mouse hepatoma cells (HTC) in different cell cycle. METHODS: Micropipette aspiration technique was adopted to measure viscoelastic coefficients and adhesion force to collagen coated surface of the cells. Three kinds of cytoskeleton perturbing agents, colchicines (Col), cytochalasin D (CD) and vinblastine (VBL), were used to treat HCC cells and hepatocytes and the effects of these treatment on cell viscoelastic coefficients were investigated. The experimental results were analyzed with a three-element standard linear solid. Further, the viscoelastic properties of HTC cells and the adhesion force of different cycle HTC cells were also investigated. The synchronous G(1) and S phase cells were achieved through thymine-2-desoryriboside and colchicines sequential blockage method and thymine-2-desoryriboside blockage method respectively. RESULTS: The elastic coefficients, but not viscous coefficient of HCC cells (K(1)=103.6+/-12.6N.m(-2), K(2)=42.5 +/ 10.4N.m(-2), mu=4.5 +/- 1.9Pa.s), were significantly higher than the corresponding value for hepatocytes (K(1)=87.5 +/- 12.1N.m(-2), K(2)=33.3+/-10.3N.m(-2), mu=5.9+/-3.0Pa.s, P【0.01). Upon treatment with CD, the viscoelastic coefficients of both hepatocytes and HCC cells decreased consistently, with magnitudes for the decrease in elastic coefficients of HCC cells (K(1): 68.7 N.m(-2) to 81.7N.m(-2), 66.3% to 78.9%; K(2): 34.5N.m(-2) to 37.1N.m(-2), 81.2% to 87.3%, P【0.001) larger than those for normal hepatocytes (K(1): 42.6N.m(-2) to 49.8N.m(-2), 48.7% to 56.9%; K(2): 17.2N.m(-2) to 20.4N.m(-2), 51.7% to 61.3%, P【0.001). There was a little decrease in the viscous coefficient of HCC cells (2.0 to 3.4Pa.s, 44.4 to 75.6%, P【0.001) than that for hepatocytes (3.0 to 3.9Pa.s, 50.8 to 66.1% P【0.001). Upon treatment with Col and VBL, the elastic coefficients of hepatocytes generally increased or tended to increase while those of HCC cells decreased. HTC cells with 72.1% of G(1) phase and 98.9% of S phase were achieved and high K(1), K(2) value and low mu value were the general characteristics of HTC cells. G(1) phase cells had higher K(1) value and lower mu value than S phase cells had, and G(1) phase HTC cells had stronger adhesive forces ((275.9 +/- 232.8) x 10(-10)N) than S phase cells ((161.2 +/- 120.4) x 10(-10)N, P【0.001). CONCLUSION: The difference in both the pattern and the magnitude of the effect of cytoskeletal perturbing agent on the viscoelastic properties between HCC cells and hepatocytes may reflect differences in the state of the cytoskeleton structure and function and in the sensitivity to perturbing agent treatment between these two types of cells. Change in the viscoelastic properties of cancer cells may affect significantly tumor cell invasion and metastasis as well as interactions between tumor cells and their micro-mechanical environments.
基金supported by NIH grant RO1 NS093985 (to DS, NZ, XW) and RO1 NS101955 (to DS)the VCU Microscopy Facility,supported,in part,by funding from NIH-NCI Cancer Center Support Grant P30 CA016059。
文摘Neovascularization and angiogenesis in the brain are important physiological processes for normal brain development and repair/regeneration following insults. Integrins are cell surface adhesion receptors mediating important function of cells such as survival, growth and development during tissue organization, differentiation and organogenesis. In this study, we used an integrin-binding array platform to identify the important types of integrins and their binding peptides that facilitate adhesion, growth, development, and vascular-like network formation of rat primary brain microvascular endothelial cells. Brain microvascular endothelial cells were isolated from rat brain on post-natal day 7. Cells were cultured in a custom-designed integrin array system containing short synthetic peptides binding to 16 types of integrins commonly expressed on cells in vertebrates. After 7 days of culture, the brain microvascular endothelial cells were processed for immunostaining with markers for endothelial cells including von Willibrand factor and platelet endothelial cell adhesion molecule. 5-Bromo-2′-dexoyuridine was added to the culture at 48 hours prior to fixation to assess cell proliferation. Among 16 integrins tested, we found that α5β1, αvβ5 and αvβ8 greatly promoted proliferation of endothelial cells in culture. To investigate the effect of integrin-binding peptides in promoting neovascularization and angiogenesis, the binding peptides to the above three types of integrins were immobilized to our custom-designed hydrogel in three-dimensional(3 D) culture of brain microvascular endothelial cells with the addition of vascular endothelial growth factor. Following a 7-day 3 D culture, the culture was fixed and processed for double labeling of phalloidin with von Willibrand factor or platelet endothelial cell adhesion molecule and assessed under confocal microscopy. In the 3 D culture in hydrogels conjugated with the integrin-binding peptide, brain microvascular endothelial cells formed interconnected vascular-like network with clearly discernable lumens, which is reminiscent of brain microvascular network in vivo. With the novel integrin-binding array system, we identified the specific types of integrins on brain microvascular endothelial cells that mediate cell adhesion and growth followed by functionalizing a 3 D hydrogel culture system using the binding peptides that specifically bind to the identified integrins, leading to robust growth and lumenized microvascular-like network formation of brain microvascular endothelial cells in 3 D culture. This technology can be used for in vitro and in vivo vascularization of transplants or brain lesions to promote brain tissue regeneration following neurological insults.
文摘INTRODUCTIONSialyl Lewis-X antigen ,correlated with carcinoma, is a group of carbohydrate antigen containing oligosaccharide expressed of embryonic tisue and glycoproteins on cell surface of embryonic tissue[1].The SLeX antigen located on cell surface is synthesized principally by two enzymes ,al ,3fucosyltransfrease and a2, 3sialyctransferase.In adults ,SLeX antigen is expressed principally on the surfaces of granulocytic cells and some tumor cells .