The efficient separation of amphoteric organic compounds from dilute solutions is of great importance in the industrial field. In the present work, the reactive extractions of 4-hydroxypyridine(4-HP) with tributyl pho...The efficient separation of amphoteric organic compounds from dilute solutions is of great importance in the industrial field. In the present work, the reactive extractions of 4-hydroxypyridine(4-HP) with tributyl phosphate(TBP), di(2-ethylhexyl) phosphoric acid(D2EHPA) and TBP + D2EHPA dissolved in 1-octanol were investigated, respectively. The influences of the initial concentrations of TBP, D2EHPA and TBP + D2EHPA on distribution ratio(D) were discussed, as well as the reactive extraction mechanism were proposed. The obvious intensification effect was observed when the mixture of TBP and D2EHPA was used as extractant. The best extraction conditions were found to be of the molar ratio of D2EHPA and TBP at 2:1 and the equilibrium aqueous pH at 3.50-4.50. D values increased with the increase of the total concentration of TBP and D2EHPA in 1-octanol. Especially, the analysis on the extraction mechanisms clearly indicate(i) TBP in 1-octanol shows negligible reactive extraction toward 4-HP,(ii) D2EHPA in 1-octanol exhibits moderate extraction effect by forming 4-HP:D2EHPA(1:1) and 4-HP:2D2EHPA(1:2) type complexes, while(iii) D2EHPA in TBP/1-octanol demonstrates the maximum distribution ratio with the 4-HP:D2EHPA(1:1) type complex domination. The discussion provides new insights on the mechanism and opens a new way for the intensified extraction of amphoteric organic compounds by using the mixture of multiple extractants in the diluent.展开更多
The extraction of Nd^3+ and Sm^3+, including the extraction and stripping capability as well as the separation effect of Nd^3+ or Sm^3+, from a sulfuric acid medium, by mixtures of di-(2-ethylhexyl) phosphoric a...The extraction of Nd^3+ and Sm^3+, including the extraction and stripping capability as well as the separation effect of Nd^3+ or Sm^3+, from a sulfuric acid medium, by mixtures of di-(2-ethylhexyl) phosphoric acid (HDEHP, H2A2(0)) and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (HEH/EHP, H2L2(0)) were studied. The distribution ratios and synergistic coefficients of Nd^3+ and Sm^3+ in different acidities were also determined. A synergistic extractive effect was found when HDEHP and HEH/EHP were used as mixed extractants for Sm^3+ or Nd^3+. The chemical compositions of the extracted complex were determined as Nd.(HA2)2-HL2 and Sm.(HA2)2-HL2. The extraction equilibrium constants, enthalpy change, and entropy change of the extraction reaction were also determined.展开更多
In this work, a novel room temperature ionic liquid (2-butyl-imidazolium di-(2-ethylhexyl) phosphate) ([C4mim] [D2EHPA]) was synthesized and tested as extractant in the mercury(II) liquid-liquid extraction. The effect...In this work, a novel room temperature ionic liquid (2-butyl-imidazolium di-(2-ethylhexyl) phosphate) ([C4mim] [D2EHPA]) was synthesized and tested as extractant in the mercury(II) liquid-liquid extraction. The effects of parameters such as aqueous to organic phase’s volume ratio, metal concentration IL concentration, pH levels, ionic strength, and temperature were reported. For the extraction of metal, [C4mim]3[R.HR]3[HgCl2]org and [C4mim]3[R.HR]3 [HgClOH]org species were formed where (H2R2) was D2EHPA. In the case of ionic strength, the results showed that the addition of sodium acetate at 0.302 mmol·L?1 to the aqueous phase strongly increased the mercury extraction yield (R = 100%). The extracted species were investigated by a calculation program using CHEAQS V. L20.1 inorder to determine the relation between the percentages of the extracted species and the extraction yield. The results showed that the extracted species in the best conditions were HgCl2 and HgClOH with respective percentages 80.66% and 18.29%.展开更多
The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(...The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(2-ethylhexyl) phosphoric acid(D2EHPA) dissolved in kerosene as the membrane solution, has been studied. The effects of pH value, initial concentration of Tb(III) and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the transport of Tb(III) have also been investigated, respectively. As a result, the optimum transport conditions of Tb(III) were obtained, i.e., the concentration of HCl solution was 4.0 mol/L, the concentration of D2EHPA was 0.16 mol/L, the volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase and pH value was 4.5 in the feed phase. Ionic strength had no obvious effect on the transport of Tb(III). Under the optimum conditions, the transport percentage of Tb(III) was up to 96.1% in a transport time of 35 min when the initial concentration of Tb(IIl) was 1.0× 10 -4 mol/L. The diffusion coefficient of Tb(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.82×10 -8 m2/s and 5.61 um, respectively. The calculated results were in good agreement with the literature data.展开更多
Metal ions including Fe^(3+),Ca^(2+),Mg^(2+),Ni^(2+),Co^(2+) and Cu^(2+) are commonly found in the leaching solution of laterite-nickel ores,and the pre-removal of Fe^(3+) is extremely important for the recovery of ni...Metal ions including Fe^(3+),Ca^(2+),Mg^(2+),Ni^(2+),Co^(2+) and Cu^(2+) are commonly found in the leaching solution of laterite-nickel ores,and the pre-removal of Fe^(3+) is extremely important for the recovery of nickel and cobalt.Di(2-ethylhexyl)phosphate acid(D2EHPA)showed high extraction rate and selectivity of Fe^(3+) over other metal ions.The acidity of the aqueous solution is crucial to the extraction of Fe^(3+),and the stoichiometry ratio between Fe^(3+) and the extractant is 0.86:1.54.The enthalpy for the extraction of Fe^(3+) using D2EHPA was 19.50 kJ/mol.The extraction of Fe^(3+)was ≥99% under the optimized conditions after a three-stage solvent extraction process.The iron stripping effects of different reagents showed an order of H_(2)C_(2)O_(4)>NH_(4)HCO_(3)>HCl>NaCl>NaHCO_(3)>Na_(2)SO_(3).The stripping of Fe was ≥99% under the optimized conditions using H_(2)C_(2)O_(4) as a stripping reagent.展开更多
基金supported by the Science and Technology Research Project of Henan Province (192102310490 and 212102310505)。
文摘The efficient separation of amphoteric organic compounds from dilute solutions is of great importance in the industrial field. In the present work, the reactive extractions of 4-hydroxypyridine(4-HP) with tributyl phosphate(TBP), di(2-ethylhexyl) phosphoric acid(D2EHPA) and TBP + D2EHPA dissolved in 1-octanol were investigated, respectively. The influences of the initial concentrations of TBP, D2EHPA and TBP + D2EHPA on distribution ratio(D) were discussed, as well as the reactive extraction mechanism were proposed. The obvious intensification effect was observed when the mixture of TBP and D2EHPA was used as extractant. The best extraction conditions were found to be of the molar ratio of D2EHPA and TBP at 2:1 and the equilibrium aqueous pH at 3.50-4.50. D values increased with the increase of the total concentration of TBP and D2EHPA in 1-octanol. Especially, the analysis on the extraction mechanisms clearly indicate(i) TBP in 1-octanol shows negligible reactive extraction toward 4-HP,(ii) D2EHPA in 1-octanol exhibits moderate extraction effect by forming 4-HP:D2EHPA(1:1) and 4-HP:2D2EHPA(1:2) type complexes, while(iii) D2EHPA in TBP/1-octanol demonstrates the maximum distribution ratio with the 4-HP:D2EHPA(1:1) type complex domination. The discussion provides new insights on the mechanism and opens a new way for the intensified extraction of amphoteric organic compounds by using the mixture of multiple extractants in the diluent.
基金the National Natural Science Foundation of China (50674016)the National High Technology Research and Develop-ment Program of China (863 Program) ( 2006AA06Z123)
文摘The extraction of Nd^3+ and Sm^3+, including the extraction and stripping capability as well as the separation effect of Nd^3+ or Sm^3+, from a sulfuric acid medium, by mixtures of di-(2-ethylhexyl) phosphoric acid (HDEHP, H2A2(0)) and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (HEH/EHP, H2L2(0)) were studied. The distribution ratios and synergistic coefficients of Nd^3+ and Sm^3+ in different acidities were also determined. A synergistic extractive effect was found when HDEHP and HEH/EHP were used as mixed extractants for Sm^3+ or Nd^3+. The chemical compositions of the extracted complex were determined as Nd.(HA2)2-HL2 and Sm.(HA2)2-HL2. The extraction equilibrium constants, enthalpy change, and entropy change of the extraction reaction were also determined.
文摘In this work, a novel room temperature ionic liquid (2-butyl-imidazolium di-(2-ethylhexyl) phosphate) ([C4mim] [D2EHPA]) was synthesized and tested as extractant in the mercury(II) liquid-liquid extraction. The effects of parameters such as aqueous to organic phase’s volume ratio, metal concentration IL concentration, pH levels, ionic strength, and temperature were reported. For the extraction of metal, [C4mim]3[R.HR]3[HgCl2]org and [C4mim]3[R.HR]3 [HgClOH]org species were formed where (H2R2) was D2EHPA. In the case of ionic strength, the results showed that the addition of sodium acetate at 0.302 mmol·L?1 to the aqueous phase strongly increased the mercury extraction yield (R = 100%). The extracted species were investigated by a calculation program using CHEAQS V. L20.1 inorder to determine the relation between the percentages of the extracted species and the extraction yield. The results showed that the extracted species in the best conditions were HgCl2 and HgClOH with respective percentages 80.66% and 18.29%.
基金Supported by the National Natural Science Foundation of China(No90401009)the Natural Science Foundation of Shaanxi Province, China(NoSJ08B16)+1 种基金the Science Research Program of Education Department of Shaanxi Province, China (No06JK215)the Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology, China (No602-210805)
文摘The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(2-ethylhexyl) phosphoric acid(D2EHPA) dissolved in kerosene as the membrane solution, has been studied. The effects of pH value, initial concentration of Tb(III) and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the transport of Tb(III) have also been investigated, respectively. As a result, the optimum transport conditions of Tb(III) were obtained, i.e., the concentration of HCl solution was 4.0 mol/L, the concentration of D2EHPA was 0.16 mol/L, the volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase and pH value was 4.5 in the feed phase. Ionic strength had no obvious effect on the transport of Tb(III). Under the optimum conditions, the transport percentage of Tb(III) was up to 96.1% in a transport time of 35 min when the initial concentration of Tb(IIl) was 1.0× 10 -4 mol/L. The diffusion coefficient of Tb(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.82×10 -8 m2/s and 5.61 um, respectively. The calculated results were in good agreement with the literature data.
基金financially supported by the National Key Research and Development Program of China(Grant No.018YFC1900502)Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC021)+1 种基金the National Natural Science Foundation of China(Grant Nos.21606241,51804289 and 51774260)CAS Interdisciplinary Innovation Team.
文摘Metal ions including Fe^(3+),Ca^(2+),Mg^(2+),Ni^(2+),Co^(2+) and Cu^(2+) are commonly found in the leaching solution of laterite-nickel ores,and the pre-removal of Fe^(3+) is extremely important for the recovery of nickel and cobalt.Di(2-ethylhexyl)phosphate acid(D2EHPA)showed high extraction rate and selectivity of Fe^(3+) over other metal ions.The acidity of the aqueous solution is crucial to the extraction of Fe^(3+),and the stoichiometry ratio between Fe^(3+) and the extractant is 0.86:1.54.The enthalpy for the extraction of Fe^(3+) using D2EHPA was 19.50 kJ/mol.The extraction of Fe^(3+)was ≥99% under the optimized conditions after a three-stage solvent extraction process.The iron stripping effects of different reagents showed an order of H_(2)C_(2)O_(4)>NH_(4)HCO_(3)>HCl>NaCl>NaHCO_(3)>Na_(2)SO_(3).The stripping of Fe was ≥99% under the optimized conditions using H_(2)C_(2)O_(4) as a stripping reagent.