Diabetes mellitus has been an increasing concern owing to its high morbidity,and the average age of individual affected by of individual affected by this disease has now decreased to mid-twenties.Given the high preval...Diabetes mellitus has been an increasing concern owing to its high morbidity,and the average age of individual affected by of individual affected by this disease has now decreased to mid-twenties.Given the high prevalence,it is necessary to address with this problem effectively.Many researchers and doctors have now developed detection techniques based on artificial intelligence to better approach problems that are missed due to human errors.Data mining techniques with algorithms such as-density-based spatial clustering of applications with noise and ordering points to identify the cluster structure,the use of machine vision systems to learn data on facial images,gain better features for model training,and diagnosis via presentation of iridocyclitis for detection of the disease through iris patterns have been deployed by various practitioners.Machine learning classifiers such as support vector machines,logistic regression,and decision trees,have been comparative discussed various authors.Deep learning models such as artificial neural networks and recurrent neural networks have been considered,with primary focus on long short-term memory and convolutional neural network architectures in comparison with other machine learning models.Various parameters such as the root-mean-square error,mean absolute errors,area under curves,and graphs with varying criteria are commonly used.In this study,challenges pertaining to data inadequacy and model deployment are discussed.The future scope of such methods has also been discussed,and new methods are expected to enhance the performance of existing models,allowing them to attain greater insight into the conditions on which the prevalence of the disease depends.展开更多
Irretrievable loss of vision is the predominant result of Glaucoma in the retina.Recently,multiple approaches have paid attention to the automatic detection of glaucoma on fundus images.Due to the interlace of blood v...Irretrievable loss of vision is the predominant result of Glaucoma in the retina.Recently,multiple approaches have paid attention to the automatic detection of glaucoma on fundus images.Due to the interlace of blood vessels and the herculean task involved in glaucoma detection,the exactly affected site of the optic disc of whether small or big size cup,is deemed challenging.Spatially Based Ellipse Fitting Curve Model(SBEFCM)classification is suggested based on the Ensemble for a reliable diagnosis of Glaucomain theOptic Cup(OC)and Optic Disc(OD)boundary correspondingly.This research deploys the Ensemble Convolutional Neural Network(CNN)classification for classifying Glaucoma or Diabetes Retinopathy(DR).The detection of the boundary between the OC and the OD is performed by the SBEFCM,which is the latest weighted ellipse fitting model.The SBEFCM that enhances and widens the multi-ellipse fitting technique is proposed here.There is a preprocessing of input fundus image besides segmentation of blood vessels to avoid interlacing surrounding tissues and blood vessels.The ascertaining of OCandODboundary,which characterizedmany output factors for glaucoma detection,has been developed by EnsembleCNNclassification,which includes detecting sensitivity,specificity,precision,andArea Under the receiver operating characteristic Curve(AUC)values accurately by an innovative SBEFCM.In terms of contrast,the proposed Ensemble CNNsignificantly outperformed the current methods.展开更多
Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed,leak fluid and vision impairment.Symptoms of retinopathy are blurred vision,changes in color perception,red spots,and...Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed,leak fluid and vision impairment.Symptoms of retinopathy are blurred vision,changes in color perception,red spots,and eye pain and it cannot be detected with a naked eye.In this paper,a new methodology based on Convolutional Neural Networks(CNN)is developed and proposed to intelligent retinopathy prediction and give a decision about the presence of retinopathy with automatic diabetic retinopathy screening with accurate diagnoses.The CNN model is trained by different images of eyes that have retinopathy and those which do not have retinopathy.The fully connected layers perform the classification process of the images from the dataset with the pooling layers minimize the coherence among the adjacent layers.The feature loss factor increases the label value to identify the patterns with the kernel-based matching.The performance of the proposed model is compared with the related methods of DREAM,KNN,GD-CNN and SVM.Experimental results show that the proposed CNN performs better.展开更多
Diabetic Retinopathy(DR)is a vision disease due to the long-term prevalenceof Diabetes Mellitus.It affects the retina of the eye and causes severedamage to the vision.If not treated on time it may lead to permanent vi...Diabetic Retinopathy(DR)is a vision disease due to the long-term prevalenceof Diabetes Mellitus.It affects the retina of the eye and causes severedamage to the vision.If not treated on time it may lead to permanent vision lossin diabetic patients.Today’s development in science has no medication to cureDiabetic Retinopathy.However,if diagnosed at an early stage it can be controlledand permanent vision loss can be avoided.Compared to the diabetic population,experts to diagnose Diabetic Retinopathy are very less in particular to local areas.Hence an automatic computer-aided diagnosis for DR detection is necessary.Inthis paper,we propose an unsupervised clustering technique to automatically clusterthe DR into one of its five development stages.The deep learning based unsupervisedclustering is made to improve itself with the help of fuzzy rough c-meansclustering where cluster centers are updated by fuzzy rough c-means clusteringalgorithm during the forward pass and the deep learning model representationsare updated by Stochastic Gradient Descent during the backward pass of training.The proposed method was implemented using python and the results were takenon DGX server with Tesla V100 GPU cards.An experimental result on the publicallyavailable Kaggle dataset shows an overall accuracy of 88.7%.The proposedmodel improves the accuracy of DR diagnosis compared to the existingunsupervised algorithms like k-means,FCM,auto-encoder,and FRCM withalexnet.展开更多
Purpose-Diabetic retinopathy(DR)is a central root of blindness all over the world.Though DR is tough to diagnose in starting stages,and the detection procedure might be time-consuming even for qualified experts.Nowada...Purpose-Diabetic retinopathy(DR)is a central root of blindness all over the world.Though DR is tough to diagnose in starting stages,and the detection procedure might be time-consuming even for qualified experts.Nowadays,intelligent disease detection techniques are extremely acceptable for progress analysis and recognition of various diseases.Therefore,a computer-aided diagnosis scheme based on intelligent learning approaches is intended to propose for diagnosing DR effectively using a benchmark dataset.Design/methodology/approach-The proposed DR diagnostic procedure involves four main steps:(1)image pre-processing,(2)blood vessel segmentation,(3)feature extraction,and(4)classification.Initially,the retinal fundus image is taken for pre-processing with the help of Contrast Limited Adaptive Histogram Equalization(CLAHE)and average filter.In the next step,the blood vessel segmentation is carried out using a segmentation process with optimized gray-level thresholding.Once the blood vessels are extracted,feature extraction is done,using Local Binary Pattern(LBP),Texture Energy Measurement(TEM based on Laws of Texture Energy),and two entropy computations-Shanon’s entropy,and Kapur’s entropy.These collected features are subjected to a classifier called Neural Network(NN)with an optimized training algorithm.Both the gray-level thresholding and NN is enhanced by the Modified Levy Updated-Dragonfly Algorithm(MLU-DA),which operates to maximize the segmentation accuracy and to reduce the error difference between the predicted and actual outcomes of the NN.Finally,this classification error can correctly prove the efficiency of the proposed DR detection model.Findings-The overall accuracy of the proposed MLU-DA was 16.6%superior to conventional classifiers,and the precision of the developed MLU-DA was 22%better than LM-NN,16.6%better than PSO-NN,GWO-NN,and DA-NN.Finally,it is concluded that the implemented MLU-DA outperformed state-of-the-art algorithms in detecting DR.Originality/value-This paper adopts the latest optimization algorithm called MLU-DA-Neural Network with optimal gray-level thresholding for detecting diabetic retinopathy disease.This is the first work utilizes MLU-DA-based Neural Network for computer-aided Diabetic Retinopathy diagnosis.展开更多
文摘Diabetes mellitus has been an increasing concern owing to its high morbidity,and the average age of individual affected by of individual affected by this disease has now decreased to mid-twenties.Given the high prevalence,it is necessary to address with this problem effectively.Many researchers and doctors have now developed detection techniques based on artificial intelligence to better approach problems that are missed due to human errors.Data mining techniques with algorithms such as-density-based spatial clustering of applications with noise and ordering points to identify the cluster structure,the use of machine vision systems to learn data on facial images,gain better features for model training,and diagnosis via presentation of iridocyclitis for detection of the disease through iris patterns have been deployed by various practitioners.Machine learning classifiers such as support vector machines,logistic regression,and decision trees,have been comparative discussed various authors.Deep learning models such as artificial neural networks and recurrent neural networks have been considered,with primary focus on long short-term memory and convolutional neural network architectures in comparison with other machine learning models.Various parameters such as the root-mean-square error,mean absolute errors,area under curves,and graphs with varying criteria are commonly used.In this study,challenges pertaining to data inadequacy and model deployment are discussed.The future scope of such methods has also been discussed,and new methods are expected to enhance the performance of existing models,allowing them to attain greater insight into the conditions on which the prevalence of the disease depends.
文摘Irretrievable loss of vision is the predominant result of Glaucoma in the retina.Recently,multiple approaches have paid attention to the automatic detection of glaucoma on fundus images.Due to the interlace of blood vessels and the herculean task involved in glaucoma detection,the exactly affected site of the optic disc of whether small or big size cup,is deemed challenging.Spatially Based Ellipse Fitting Curve Model(SBEFCM)classification is suggested based on the Ensemble for a reliable diagnosis of Glaucomain theOptic Cup(OC)and Optic Disc(OD)boundary correspondingly.This research deploys the Ensemble Convolutional Neural Network(CNN)classification for classifying Glaucoma or Diabetes Retinopathy(DR).The detection of the boundary between the OC and the OD is performed by the SBEFCM,which is the latest weighted ellipse fitting model.The SBEFCM that enhances and widens the multi-ellipse fitting technique is proposed here.There is a preprocessing of input fundus image besides segmentation of blood vessels to avoid interlacing surrounding tissues and blood vessels.The ascertaining of OCandODboundary,which characterizedmany output factors for glaucoma detection,has been developed by EnsembleCNNclassification,which includes detecting sensitivity,specificity,precision,andArea Under the receiver operating characteristic Curve(AUC)values accurately by an innovative SBEFCM.In terms of contrast,the proposed Ensemble CNNsignificantly outperformed the current methods.
基金the MSIT(Ministry of Science and ICT),Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)program(IITP-2020-0-01832)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)and the Soonchunhyang University Research Fund.
文摘Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed,leak fluid and vision impairment.Symptoms of retinopathy are blurred vision,changes in color perception,red spots,and eye pain and it cannot be detected with a naked eye.In this paper,a new methodology based on Convolutional Neural Networks(CNN)is developed and proposed to intelligent retinopathy prediction and give a decision about the presence of retinopathy with automatic diabetic retinopathy screening with accurate diagnoses.The CNN model is trained by different images of eyes that have retinopathy and those which do not have retinopathy.The fully connected layers perform the classification process of the images from the dataset with the pooling layers minimize the coherence among the adjacent layers.The feature loss factor increases the label value to identify the patterns with the kernel-based matching.The performance of the proposed model is compared with the related methods of DREAM,KNN,GD-CNN and SVM.Experimental results show that the proposed CNN performs better.
文摘Diabetic Retinopathy(DR)is a vision disease due to the long-term prevalenceof Diabetes Mellitus.It affects the retina of the eye and causes severedamage to the vision.If not treated on time it may lead to permanent vision lossin diabetic patients.Today’s development in science has no medication to cureDiabetic Retinopathy.However,if diagnosed at an early stage it can be controlledand permanent vision loss can be avoided.Compared to the diabetic population,experts to diagnose Diabetic Retinopathy are very less in particular to local areas.Hence an automatic computer-aided diagnosis for DR detection is necessary.Inthis paper,we propose an unsupervised clustering technique to automatically clusterthe DR into one of its five development stages.The deep learning based unsupervisedclustering is made to improve itself with the help of fuzzy rough c-meansclustering where cluster centers are updated by fuzzy rough c-means clusteringalgorithm during the forward pass and the deep learning model representationsare updated by Stochastic Gradient Descent during the backward pass of training.The proposed method was implemented using python and the results were takenon DGX server with Tesla V100 GPU cards.An experimental result on the publicallyavailable Kaggle dataset shows an overall accuracy of 88.7%.The proposedmodel improves the accuracy of DR diagnosis compared to the existingunsupervised algorithms like k-means,FCM,auto-encoder,and FRCM withalexnet.
文摘Purpose-Diabetic retinopathy(DR)is a central root of blindness all over the world.Though DR is tough to diagnose in starting stages,and the detection procedure might be time-consuming even for qualified experts.Nowadays,intelligent disease detection techniques are extremely acceptable for progress analysis and recognition of various diseases.Therefore,a computer-aided diagnosis scheme based on intelligent learning approaches is intended to propose for diagnosing DR effectively using a benchmark dataset.Design/methodology/approach-The proposed DR diagnostic procedure involves four main steps:(1)image pre-processing,(2)blood vessel segmentation,(3)feature extraction,and(4)classification.Initially,the retinal fundus image is taken for pre-processing with the help of Contrast Limited Adaptive Histogram Equalization(CLAHE)and average filter.In the next step,the blood vessel segmentation is carried out using a segmentation process with optimized gray-level thresholding.Once the blood vessels are extracted,feature extraction is done,using Local Binary Pattern(LBP),Texture Energy Measurement(TEM based on Laws of Texture Energy),and two entropy computations-Shanon’s entropy,and Kapur’s entropy.These collected features are subjected to a classifier called Neural Network(NN)with an optimized training algorithm.Both the gray-level thresholding and NN is enhanced by the Modified Levy Updated-Dragonfly Algorithm(MLU-DA),which operates to maximize the segmentation accuracy and to reduce the error difference between the predicted and actual outcomes of the NN.Finally,this classification error can correctly prove the efficiency of the proposed DR detection model.Findings-The overall accuracy of the proposed MLU-DA was 16.6%superior to conventional classifiers,and the precision of the developed MLU-DA was 22%better than LM-NN,16.6%better than PSO-NN,GWO-NN,and DA-NN.Finally,it is concluded that the implemented MLU-DA outperformed state-of-the-art algorithms in detecting DR.Originality/value-This paper adopts the latest optimization algorithm called MLU-DA-Neural Network with optimal gray-level thresholding for detecting diabetic retinopathy disease.This is the first work utilizes MLU-DA-based Neural Network for computer-aided Diabetic Retinopathy diagnosis.