Diabetic eye disease refers to a group of eye complications that occur in diabetic patients and include diabetic retinopathy, diabetic macular edema, diabetic cataracts, and diabetic glaucoma. However, the global epid...Diabetic eye disease refers to a group of eye complications that occur in diabetic patients and include diabetic retinopathy, diabetic macular edema, diabetic cataracts, and diabetic glaucoma. However, the global epidemiology of these conditions has not been well characterized. In this study, we collected information on diabetic eye disease-related research grants from seven representative countries––the United States, China, Japan, the United Kingdom, Spain, Germany, and France––by searching for all global diabetic eye disease journal articles in the Web of Science and Pub Med databases, all global registered clinical trials in the Clinical Trials database, and new drugs approved by the United States, China, Japan, and EU agencies from 2012 to 2021. During this time period, diabetic retinopathy accounted for the vast majority(89.53%) of the 2288 government research grants that were funded to investigate diabetic eye disease, followed by diabetic macular edema(9.27%). The United States granted the most research funding for diabetic eye disease out of the seven countries assessed. The research objectives of grants focusing on diabetic retinopathy and diabetic macular edema differed by country. Additionally, the United States was dominant in terms of research output, publishing 17.53% of global papers about diabetic eye disease and receiving 22.58% of total citations. The United States and the United Kingdom led international collaborations in research into diabetic eye disease. Of the 415 clinical trials that we identified, diabetic macular edema was the major disease that was targeted for drug development(58.19%). Approximately half of the trials(49.13%) pertained to angiogenesis. However, few drugs were approved for ophthalmic(40 out of 1830;2.19%) and diabetic eye disease(3 out of 1830;0.02%) applications. Our findings show that basic and translational research related to diabetic eye disease in the past decade has not been highly active, and has yielded few new treatment methods and newly approved drugs.展开更多
In the emerging field of image segmentation,Fully Convolutional Networks(FCNs)have recently become prominent.However,their effectiveness is intimately linked with the correct selection and fine-tuning of hyperparamete...In the emerging field of image segmentation,Fully Convolutional Networks(FCNs)have recently become prominent.However,their effectiveness is intimately linked with the correct selection and fine-tuning of hyperparameters,which can often be a cumbersome manual task.The main aim of this study is to propose a more efficient,less labour-intensive approach to hyperparameter optimization in FCNs for segmenting fundus images.To this end,our research introduces a hyperparameter-optimized Fully Convolutional Encoder-Decoder Network(FCEDN).The optimization is handled by a novel Genetic Grey Wolf Optimization(G-GWO)algorithm.This algorithm employs the Genetic Algorithm(GA)to generate a diverse set of initial positions.It leverages Grey Wolf Optimization(GWO)to fine-tune these positions within the discrete search space.Testing on the Indian Diabetic Retinopathy Image Dataset(IDRiD),Diabetic Retinopathy,Hypertension,Age-related macular degeneration and Glacuoma ImageS(DR-HAGIS),and Ocular Disease Intelligent Recognition(ODIR)datasets showed that the G-GWO method outperformed four other variants of GWO,GA,and PSO-based hyperparameter optimization techniques.The proposed model achieved impressive segmentation results,with accuracy rates of 98.5%for IDRiD,98.7%for DR-HAGIS,and 98.4%,98.8%,and 98.5%for different sub-datasets within ODIR.These results suggest that the proposed hyperparameter-optimized FCEDN model,driven by the G-GWO algorithm,is more efficient than recent deep-learning models for image segmentation tasks.It thereby presents the potential for increased automation and accuracy in the segmentation of fundus images,mitigating the need for extensive manual hyperparameter adjustments.展开更多
Diabetic Eye Disease(DED)is a fundamental cause of blindness in human beings in the medical world.Different techniques are proposed to forecast and examine the stages in Prognostication of Diabetic Retinopathy(DR).The...Diabetic Eye Disease(DED)is a fundamental cause of blindness in human beings in the medical world.Different techniques are proposed to forecast and examine the stages in Prognostication of Diabetic Retinopathy(DR).The Machine Learning(ML)and the Deep Learning(DL)algorithms are the predomi-nant techniques to project and explore the images of DR.Even though some solu-tions were adapted to challenge the cause of DR disease,still there should be an efficient and accurate DR prediction to be adapted to refine its performance.In this work,a hybrid technique was proposed for classification and prediction of DR.The proposed hybrid technique consists of Ensemble Learning(EL),2 Dimensional-Conventional Neural Network(2D-CNN),Transfer Learning(TL)and Correlation method.Initially,the Stochastic Gradient Boosting(SGB)EL method was used to predict the DR.Secondly,the boosting based EL method was used to predict the DR of images.Thirdly 2D-CNN was applied to categorize the various stages of DR images.Finally,the TL was adopted to transfer the clas-sification prediction to training datasets.When this TL was applied,a new predic-tion feature was increased.From the experiment,the proposed technique has achieved 97.8%of accuracy in prophecies of DR images and 98%accuracy in grading of images.The experiment was also extended to measure the sensitivity(99.6%)and specificity(97.3%)metrics.The predicted accuracy rate was com-pared with existing methods.展开更多
基金supported by the National Natural Science Foundation of China,No.82122009 (to JX)Science Research Foundation ofAier Eye Hospital Group,No.AM2001D1 (to JX)the Natural Science Foundation of Hunan Province,No.2020JJ5002 (to SJ)。
文摘Diabetic eye disease refers to a group of eye complications that occur in diabetic patients and include diabetic retinopathy, diabetic macular edema, diabetic cataracts, and diabetic glaucoma. However, the global epidemiology of these conditions has not been well characterized. In this study, we collected information on diabetic eye disease-related research grants from seven representative countries––the United States, China, Japan, the United Kingdom, Spain, Germany, and France––by searching for all global diabetic eye disease journal articles in the Web of Science and Pub Med databases, all global registered clinical trials in the Clinical Trials database, and new drugs approved by the United States, China, Japan, and EU agencies from 2012 to 2021. During this time period, diabetic retinopathy accounted for the vast majority(89.53%) of the 2288 government research grants that were funded to investigate diabetic eye disease, followed by diabetic macular edema(9.27%). The United States granted the most research funding for diabetic eye disease out of the seven countries assessed. The research objectives of grants focusing on diabetic retinopathy and diabetic macular edema differed by country. Additionally, the United States was dominant in terms of research output, publishing 17.53% of global papers about diabetic eye disease and receiving 22.58% of total citations. The United States and the United Kingdom led international collaborations in research into diabetic eye disease. Of the 415 clinical trials that we identified, diabetic macular edema was the major disease that was targeted for drug development(58.19%). Approximately half of the trials(49.13%) pertained to angiogenesis. However, few drugs were approved for ophthalmic(40 out of 1830;2.19%) and diabetic eye disease(3 out of 1830;0.02%) applications. Our findings show that basic and translational research related to diabetic eye disease in the past decade has not been highly active, and has yielded few new treatment methods and newly approved drugs.
基金supported in part by the National Natural Science Foundation of China under Grant 11527801 and 41706201.
文摘In the emerging field of image segmentation,Fully Convolutional Networks(FCNs)have recently become prominent.However,their effectiveness is intimately linked with the correct selection and fine-tuning of hyperparameters,which can often be a cumbersome manual task.The main aim of this study is to propose a more efficient,less labour-intensive approach to hyperparameter optimization in FCNs for segmenting fundus images.To this end,our research introduces a hyperparameter-optimized Fully Convolutional Encoder-Decoder Network(FCEDN).The optimization is handled by a novel Genetic Grey Wolf Optimization(G-GWO)algorithm.This algorithm employs the Genetic Algorithm(GA)to generate a diverse set of initial positions.It leverages Grey Wolf Optimization(GWO)to fine-tune these positions within the discrete search space.Testing on the Indian Diabetic Retinopathy Image Dataset(IDRiD),Diabetic Retinopathy,Hypertension,Age-related macular degeneration and Glacuoma ImageS(DR-HAGIS),and Ocular Disease Intelligent Recognition(ODIR)datasets showed that the G-GWO method outperformed four other variants of GWO,GA,and PSO-based hyperparameter optimization techniques.The proposed model achieved impressive segmentation results,with accuracy rates of 98.5%for IDRiD,98.7%for DR-HAGIS,and 98.4%,98.8%,and 98.5%for different sub-datasets within ODIR.These results suggest that the proposed hyperparameter-optimized FCEDN model,driven by the G-GWO algorithm,is more efficient than recent deep-learning models for image segmentation tasks.It thereby presents the potential for increased automation and accuracy in the segmentation of fundus images,mitigating the need for extensive manual hyperparameter adjustments.
文摘Diabetic Eye Disease(DED)is a fundamental cause of blindness in human beings in the medical world.Different techniques are proposed to forecast and examine the stages in Prognostication of Diabetic Retinopathy(DR).The Machine Learning(ML)and the Deep Learning(DL)algorithms are the predomi-nant techniques to project and explore the images of DR.Even though some solu-tions were adapted to challenge the cause of DR disease,still there should be an efficient and accurate DR prediction to be adapted to refine its performance.In this work,a hybrid technique was proposed for classification and prediction of DR.The proposed hybrid technique consists of Ensemble Learning(EL),2 Dimensional-Conventional Neural Network(2D-CNN),Transfer Learning(TL)and Correlation method.Initially,the Stochastic Gradient Boosting(SGB)EL method was used to predict the DR.Secondly,the boosting based EL method was used to predict the DR of images.Thirdly 2D-CNN was applied to categorize the various stages of DR images.Finally,the TL was adopted to transfer the clas-sification prediction to training datasets.When this TL was applied,a new predic-tion feature was increased.From the experiment,the proposed technique has achieved 97.8%of accuracy in prophecies of DR images and 98%accuracy in grading of images.The experiment was also extended to measure the sensitivity(99.6%)and specificity(97.3%)metrics.The predicted accuracy rate was com-pared with existing methods.