期刊文献+
共找到1,463篇文章
< 1 2 74 >
每页显示 20 50 100
Teneligliptin mitigates diabetic cardiomyopathy by inhibiting activation of the NLRP3 inflammasome 被引量:6
1
作者 Gu-Lao Zhang Yuan Liu +4 位作者 Yan-Feng Liu Xian-Tao Huang Yu Tao Zhen-Huan Chen Heng-Li Lai 《World Journal of Diabetes》 SCIE 2024年第4期724-734,共11页
BACKGROUND Diabetic cardiomyopathy(DCM),which is a complication of diabetes,poses a great threat to public health.Recent studies have confirmed the role of NLRP3(NOD-like receptor protein 3)activation in DCM developme... BACKGROUND Diabetic cardiomyopathy(DCM),which is a complication of diabetes,poses a great threat to public health.Recent studies have confirmed the role of NLRP3(NOD-like receptor protein 3)activation in DCM development through the inflammatory response.Teneligliptin is an oral hypoglycemic dipeptidyl peptidase-IV inhibitor used to treat diabetes.Teneligliptin has recently been reported to have anti-inflammatory and protective effects on myocardial cells.AIM To examine the therapeutic effects of teneligliptin on DCM in diabetic mice.METHODS Streptozotocin was administered to induce diabetes in mice,followed by treatment with 30 mg/kg teneligliptin.RESULTS Marked increases in cardiomyocyte area and cardiac hypertrophy indicator heart weight/tibia length reductions in fractional shortening,ejection fraction,and heart rate;increases in creatine kinase-MB(CK-MB),aspartate transaminase(AST),and lactate dehydrogenase(LDH)levels;and upregulated NADPH oxidase 4 were observed in diabetic mice,all of which were significantly reversed by teneligliptin.Moreover,NLRP3 inflammasome activation and increased release of interleukin-1βin diabetic mice were inhibited by teneligliptin.Primary mouse cardiomyocytes were treated with high glucose(30 mmol/L)with or without teneligliptin(2.5 or 5μM)for 24 h.NLRP3 inflammasome activation.Increases in CKMB,AST,and LDH levels in glucose-stimulated cardiomyocytes were markedly inhibited by teneligliptin,and AMP(p-adenosine 5‘-monophosphate)-p-AMPK(activated protein kinase)levels were increased.Furthermore,the beneficial effects of teneligliptin on hyperglycaemia-induced cardiomyocytes were abolished by the AMPK signaling inhibitor compound C.CONCLUSION Overall,teneligliptin mitigated DCM by mitigating activation of the NLRP3 inflammasome. 展开更多
关键词 diabetic cardiomyopathy Teneligliptin NLRP3 AMPK INTERLEUKIN-1Β
下载PDF
Sodium-dependent glucose transporter 2 inhibitors effects on myocardial function in patients with type 2 diabetes and asymptomatic heart failure 被引量:4
2
作者 Petra Grubić Rotkvić Luka Rotkvić +1 位作者 Ana Đuzel Čokljat Maja Cigrovski Berković 《World Journal of Cardiology》 2024年第8期448-457,共10页
BACKGROUND Sodium-dependent glucose transporter 2 inhibitors(SGLT2i)have shown efficacy in reducing heart failure(HF)burden in a very heterogeneous groups of patients,raising doubts about some contemporary assumptions... BACKGROUND Sodium-dependent glucose transporter 2 inhibitors(SGLT2i)have shown efficacy in reducing heart failure(HF)burden in a very heterogeneous groups of patients,raising doubts about some contemporary assumptions of their mechanism of action.We previously published a prospective observational study that evaluated mechanisms of action of SGLT2i in patients with type 2 diabetes who were in HF stages A and B on dual hypoglycemic therapy.Two groups of patients were included in the study:the ones receiving SGLT2i as an add-on agent to metformin and the others on dipeptidyl peptidase-4 inhibitors as an add-on to metformin due to suboptimal glycemic control.AIM To evaluate the outcomes regarding natriuretic peptide,oxidative stress,inflammation,blood pressure,heart rate,cardiac function,and body weight.METHODS The study outcomes were examined by dividing each treatment arm into two subgroups according to baseline parameters of global longitudinal strain(GLS),N-terminal pro-brain natriuretic peptide,myeloperoxidase(MPO),high-sensitivity C-reactive protein(hsCRP),and systolic and diastolic blood pressure.To evaluate the possible predictors of observed changes in the SGLT2i arm during follow-up,a rise in stroke volume index,body mass index(BMI)decrease,and lack of heart rate increase,linear regression analysis was performed.RESULTS There was a greater reduction of MPO,hsCRP,GLS,and blood pressure in the groups with higher baseline values of mentioned parameters irrespective of the therapeutic arm after 6 months of follow-up.Significant independent predictors of heart rate decrease were a reduction in early mitral inflow velocity to early diastolic mitral annular velocity at the interventricular septal annulus ratio and BMI,while the predictor of stroke volume index increase was SGLT2i therapy itself.CONCLUSION SGLT2i affect body composition,reduce cardiac load,improve diastolic/systolic function,and attenuate the sympathetic response.Glycemic control contributes to the improvement of heart function,blood pressure control,oxidative stress,and reduction in inflammation. 展开更多
关键词 Sodium-dependent glucose transporter 2 inhibitors Dipeptidyl peptidase-4 inhibitors Type 2 diabetes mellitus Heart failure diabetic cardiomyopathy Cardiovascular disease
下载PDF
Diabetic cardiomyopathy:Emerging therapeutic options
3
作者 Cornelius James Fernandez Sahana Shetty Joseph M Pappachan 《World Journal of Diabetes》 SCIE 2024年第8期1677-1682,共6页
Diabetic cardiomyopathy(DbCM)is a common but underrecognized complication of patients with diabetes mellitus(DM).Although the pathobiology of other cardiac complications of diabetes such as ischemic heart disease and ... Diabetic cardiomyopathy(DbCM)is a common but underrecognized complication of patients with diabetes mellitus(DM).Although the pathobiology of other cardiac complications of diabetes such as ischemic heart disease and cardiac autonomic neuropathy are mostly known with reasonable therapeutic options,the mechanisms and management options for DbCM are still not fully understood.In its early stages,DbCM presents with diastolic dysfunction followed by heart failure(HF)with preserved ejection fraction that can progress to systolic dysfunction and HF with reduced ejection fraction in its advanced stages unless appropriately managed.Apart from prompt control of DM with lifestyle changes and antidiabetic medications,disease-modifying therapy for DbCM includes prompt control of hypertension and dyslipidemia inherent to patients with DM as in other forms of heart diseases and the use of treatments with proven efficacy in HF.A basic study by Zhang et al,in a recent issue of the World Journal of Diabetes elaborates the potential pathophysiological alterations and the therapeutic role of teneligliptin in diabetic mouse models with DbCM.Although this preliminary basic study might help to improve our understanding of DbCM and offer a potential new management option for patients with the disease,the positive results from such animal models might not always translate to clinical practice as the pathobiology of DbCM in humans could be different.However,such experimental studies can encourage more scientific efforts to find a better solution to treat patients with this enigmatic disease. 展开更多
关键词 diabetic cardiomyopathy diabetic cardiomyopathy Heart failure PATHOBIOLOGY Teneligliptin
下载PDF
Potential mechanism of teneligliptin in the treatment of diabetic cardiomyopathy
4
作者 Jing Guo Yi Cao +1 位作者 Qing-Yuan Wu Lu-Sha Cen 《World Journal of Diabetes》 SCIE 2024年第10期2002-2005,共4页
Diabetic cardiomyopathy(DCM),a complication of diabetes,poses a significant threat to public health,both its diagnosis and treatment presents challenges.Teneligliptin has promising applications and research implicatio... Diabetic cardiomyopathy(DCM),a complication of diabetes,poses a significant threat to public health,both its diagnosis and treatment presents challenges.Teneligliptin has promising applications and research implications in the treat-ment of diabetes mellitus.Zhang et al observed the therapeutic effect of tenelig-liptin on cardiac function in mice with DCM.They validated that teneligliptin’s mechanism of action in treating DCM involves cardiomyocyte protection and inhibition of NLRP3 inflammasome activity.Given that the NLRP3 inflammasome plays a crucial role in the onset and progression of DCM,it presents a promising therapeutic target.Nevertheless,further clinical validation is required to ascertain the preventive and therapeutic efficacy of teneligliptin in DCM. 展开更多
关键词 Teneligliptin NLRP3 inflammasome diabetes diabetic cardiomyopathy diabetes complications
下载PDF
Adipsin inhibits Irak2 mitochondrial translocation and improves fatty acid β-oxidation to alleviate diabetic cardiomyopathy
5
作者 Meng-Yuan Jiang Wan-Rong Man +14 位作者 Xue-Bin Zhang Xiao-Hua Zhang Yu Duan Jie Lin Yan Zhang Yang Cao De-Xi Wu Xiao-Fei Shu Lei Xin Hao Wang Xiao Zhang Cong-Ye Li Xiao-Ming Gu Xuan Zhang Dong-Dong Sun 《Military Medical Research》 SCIE CAS CSCD 2024年第5期625-642,共18页
Background Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid β-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity,... Background Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid β-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity, which impairs myocardial function. Adipsin may play an important protective role in the pathogenesis of DCM. The aim of this study is to investigate the regulatory effect of Adipsin on DCM lipotoxicity and its molecular mechanism.MethodsA high-fat diet (HFD)-induced type 2 diabetes mellitus model was constructed in mice with adipose tissue-specific overexpression of Adipsin (Adipsin-Tg). Liquid chromatography-tandem mass spectrometry (LC–MS/MS), glutathione-S-transferase (GST) pull-down technique, Co-immunoprecipitation (Co-IP) and immunofluorescence colocalization analyses were used to investigate the molecules which can directly interact with Adipsin. The immunocolloidal gold method was also used to detect the interaction between Adipsin and its downstream modulator.ResultsThe expression of Adipsin was significantly downregulated in the HFD-induced DCM model (P < 0.05). Adipose tissue-specific overexpression of Adipsin significantly improved cardiac function and alleviated cardiac remodeling in DCM (P < 0.05). Adipsin overexpression also alleviated mitochondrial oxidative phosphorylation function in diabetic stress (P < 0.05). LC–MS/MS analysis, GST pull-down technique and Co-IP studies revealed that interleukin-1 receptor-associated kinase-like 2 (Irak2) was a downstream regulator of Adipsin. Immunofluorescence analysis also revealed that Adipsin was co-localized with Irak2 in cardiomyocytes. Immunocolloidal gold electron microscopy and Western blotting analysis indicated that Adipsin inhibited the mitochondrial translocation of Irak2 in DCM, thus dampening the interaction between Irak2 and prohibitin (Phb)-optic atrophy protein 1 (Opa1) on mitochondria and improving the structural integrity and function of mitochondria (P < 0.05). Interestingly, in the presence of Irak2 knockdown, Adipsin overexpression did not further alleviate myocardial mitochondrial destruction and cardiac dysfunction, suggesting a downstream role of Irak2 in Adipsin-induced responses (P < 0.05). Consistent with these findings, overexpression of Adipsin after Irak2 knockdown did not further reduce the accumulation of lipids and their metabolites in the cardiac myocardium, nor did it enhance the oxidation capacity of cardiomyocytes expose to palmitate (PA) (P < 0.05). These results indicated that Irak2 may be a downstream regulator of Adipsin.ConclusionsAdipsin improves fatty acid β-oxidation and alleviates mitochondrial injury in DCM. The mechanism is related to Irak2 interaction and inhibition of Irak2 mitochondrial translocation. 展开更多
关键词 diabetic cardiomyopathy Mitochondrial translocation Mitochondrial function Fatty acidβ-oxidation
下载PDF
Atorvastatin ameliorated myocardial fibrosis by inhibiting oxidative stress and modulating macrophage polarization in diabetic cardiomyopathy
6
作者 Xiao-Tian Lei Dan-Lan Pu +1 位作者 Geng Shan Qi-Nan Wu 《World Journal of Diabetes》 SCIE 2024年第6期1070-1073,共4页
In this editorial,we commented on the article published in the recent issue of the World Journal of Diabetes.Diabetic cardiomyopathy(DCM)is characterized by myocardial fibrosis,ventricular hypertrophy and diastolic dy... In this editorial,we commented on the article published in the recent issue of the World Journal of Diabetes.Diabetic cardiomyopathy(DCM)is characterized by myocardial fibrosis,ventricular hypertrophy and diastolic dysfunction in diabetic patients,which can cause heart failure and threaten the life of patients.The pathogenesis of DCM has not been fully clarified,and it may involve oxidative stress,inflammatory stimulation,apoptosis,and autophagy.There is lack of effective therapies for DCM in the clinical practice.Statins have been widely used in the clinical practice for years mainly to reduce cholesterol and stabilize arterial plaques,and exhibit definite cardiovascular protective effects.Studies have shown that statins also have anti-inflammatory and antioxidant effects.We were particularly concerned about the recent findings that atorvastatin alleviated myocardial fibrosis in db/db mice by regulating the antioxidant stress and antiinflammatory effects of macrophage polarization on diabetic myocardium,and thereby improving DCM. 展开更多
关键词 diabetic cardiomyopathy STATINS MACROPHAGE Oxidative stress
下载PDF
Sodium-dependent glucose transporter 2 inhibitors:Transforming diabetic cardiomyopathy management
7
作者 Chun-Han Cheng Wen-Rui Hao Tzu-Hurng Cheng 《World Journal of Cardiology》 2024年第12期781-786,共6页
This article addresses the substantial findings of a study on sodium-dependent glucose transporter 2 inhibitors(SGLT2is)and their effects on myocardial function in patients with type 2 diabetes and asymptomatic heart ... This article addresses the substantial findings of a study on sodium-dependent glucose transporter 2 inhibitors(SGLT2is)and their effects on myocardial function in patients with type 2 diabetes and asymptomatic heart failure.The editorial explores the broader implications of the study findings for clinical practice,thus highlighting the pivotal role of SGLT2is in improving cardiac function,reducing oxidative stress,and attenuating inflammation.It emphasizes the importance of early intervention with SGLT2is in preventing the progression of diabetic cardio-myopathy;hence,these inhibitors have the potential to transform the manage-ment of asymptomatic heart failure in patients with diabetes. 展开更多
关键词 Sodium-dependent glucose transporter 2 inhibitors diabetic cardiomyopathy Asymptomatic heart failure Cardiac function Type 2 diabetes
下载PDF
Teneligliptin:A potential therapeutic approach for diabetic cardiomyopathy
8
作者 Ashraf Al Madhoun 《World Journal of Diabetes》 SCIE 2024年第8期1654-1658,共5页
In this editorial,we comment on the article by Zhang et al.Diabetes mellitus is a chronic disorder associated with several complications like cardiomyopathy,neuropathy,and retinopathy.Diabetes prevalence is increasing... In this editorial,we comment on the article by Zhang et al.Diabetes mellitus is a chronic disorder associated with several complications like cardiomyopathy,neuropathy,and retinopathy.Diabetes prevalence is increasing worldwide.Multiple diabetes medications are prescribed based on individual patients’needs.However,the exact mechanisms by which many of these drugs exert their protective effects remain unclear.Zhang et al elucidates molecular mechanisms undelaying cardioprotective effect of the dipeptidyl peptidase-IV inhibitor,teneligliptin.Briefly,teneligliptin alleviates the activation of NOD-like receptor protein 3 inflammasome,a multiprotein complex that plays a pivotal role in regulating the innate immune system and inflammatory signaling.Suppression of NOD-like receptor protein 3 inflammasome activity reduces the expression of cytokines,oxygen radicals and inflammation.These findings highlight teneligliptin as an anti-diabetic cardioprotective reagent. 展开更多
关键词 Teneligliptin diabetes mellitus NOD-like receptor protein 3 inflammasome INFLAMMATION cardiomyopathy
下载PDF
Teneligliptin mitigates diabetic cardiomyopathy through inflammasome inhibition:Insights from experimental studies
9
作者 Chun-Yao Cheng Wen-Rui Hao +1 位作者 Ju-Chi Liu Tzu-Hurng Cheng 《World Journal of Diabetes》 SCIE 2024年第12期2370-2375,共6页
This article provides commentary on the article by Zhang et al.In this original research,Zhang et al investigated the therapeutic potential of teneligliptin for diabetic cardiomyopathy(DCM),which was mediated by targe... This article provides commentary on the article by Zhang et al.In this original research,Zhang et al investigated the therapeutic potential of teneligliptin for diabetic cardiomyopathy(DCM),which was mediated by targeting the NOD-like receptor protein 3(NLRP3)inflammasome.Through the use of both in vivo and in vitro models,the study demonstrated that teneligliptin alleviates cardiac hyper-trophy,reduces myocardial injury,and mitigates the inflammatory responses as-sociated with DCM.These findings suggest that teneligliptin’s cardioprotective effects are mediated through the inhibition of NLRP3 inflammasome activation,positioning it as a promising therapeutic option for managing DCM in diabetic patients. 展开更多
关键词 diabetic cardiomyopathy Teneligliptin Nucleotide-binding oligomerization domain-like receptor 3 inflammasome Inflammasome inhibition
下载PDF
Macrophage modulation with dipeptidyl peptidase-4 inhibitors:A new frontier for treating diabetic cardiomyopathy?
10
作者 Saeed Mohammadi Ahmed Al-Harrasi 《World Journal of Diabetes》 SCIE 2024年第9期1847-1852,共6页
This editorial introduces the potential of targeting macrophage function for diabetic cardiomyopathy(DCM)treatment by dipeptidyl peptidase-4(DPP-4)inhibitors.Zhang et al studied teneligliptin,a DPP-4 inhibitor used fo... This editorial introduces the potential of targeting macrophage function for diabetic cardiomyopathy(DCM)treatment by dipeptidyl peptidase-4(DPP-4)inhibitors.Zhang et al studied teneligliptin,a DPP-4 inhibitor used for diabetes management,and its potential cardioprotective effects in a diabetic mouse model.They suggested teneligliptin administration may reverse established markers of DCM,including cardiac hypertrophy and compromised function.It also inhibited the NLRP3 inflammasome and reduced inflammatory cytokine production in diabetic mice.Macrophages play crucial roles in DCM pathogenesis.Chronic hyperglycemia disturbs the balance between pro-inflammatory(M1)and antiinflammatory(M2)macrophages,favoring a pro-inflammatory state contributing to heart damage.Here,we highlight the potential of DPP-4 inhibitors to modulate macrophage function and promote an anti-inflammatory environment.These compounds may achieve this by elevating glucagon-like peptide-1 levels and potentially inhibiting the NLRP3 inflammasome.Further studies on teneligliptin in combination with other therapies targeting different aspects of DCM could be suggested for developing more effective treatment strategies to improve cardiovascular health in diabetic patients. 展开更多
关键词 diabetic cardiomyopathy MACROPHAGE Dipeptidyl peptidase-4 inhibitor Teneligliptin NLRP3 inflammasome Glucagon-like peptide-1
下载PDF
Identification of immune feature genes and intercellular profiles in diabetic cardiomyopathy
11
作者 Ze-Qun Zheng Di-Hui Cai Yong-Fei Song 《World Journal of Diabetes》 SCIE 2024年第10期2093-2110,共18页
BACKGROUND Diabetic cardiomyopathy(DCM)is a multifaceted cardiovascular disorder in which immune dysregulation plays a pivotal role.The immunological molecular mechanisms underlying DCM are poorly understood.AIM To ex... BACKGROUND Diabetic cardiomyopathy(DCM)is a multifaceted cardiovascular disorder in which immune dysregulation plays a pivotal role.The immunological molecular mechanisms underlying DCM are poorly understood.AIM To examine the immunological molecular mechanisms of DCM and construct diagnostic and prognostic models of DCM based on immune feature genes(IFGs).METHODS Weighted gene co-expression network analysis along with machine learning methods were employed to pinpoint IFGs within bulk RNA sequencing(RNA-seq)datasets.Single-sample gene set enrichment analysis(ssGSEA)facilitated the analysis of immune cell infiltration.Diagnostic and prognostic models for these IFGs were developed and assessed in a validation cohort.Gene expression in the DCM cell model was confirmed through real time-quantitative polymerase chain reaction and western blotting techniques.Additionally,single-cell RNA-seq data provided deeper insights into cellular profiles and interactions.RESULTS The overlap between 69 differentially expressed genes in the DCM-associated module and 2483 immune genes yielded 7 differentially expressed immune-related genes.Four IFGs showed good diagnostic and prognostic values in the validation cohort:Proenkephalin(Penk)and retinol binding protein 7(Rbp7),which were highly expressed,and glucagon receptor and inhibin subunit alpha,which were expressed at low levels in DCM patients(all area under the curves>0.9).SsGSEA revealed that IFG-related immune cell infiltration primarily involved type 2 T helper cells.High expression of Penk(P<0.0001)and Rbp7(P=0.001)was detected in cardiomyocytes and interstitial cells and further confirmed in a DCM cell model in vitro.Intercellular events and communication analysis revealed abnormal cellular phenotype transformation and signaling communication in DCM,especially between mesenchymal cells and macrophages.CONCLUSION The present study identified Penk and Rbp7 as potential DCM biomarkers,and aberrant mesenchymal-immune cell phenotype communication may be an important aspect of DCM pathogenesis. 展开更多
关键词 diabetic cardiomyopathy Immune feature genes PROENKEPHALIN Retinol binding protein 7 Immune cell infiltration Intercellular communication
下载PDF
Diabetic cardiomyopathy:Importance of direct evidence to support the roles of NOD-like receptor protein 3 inflammasome and pyroptosis
12
作者 Lu Cai Yi Tan +2 位作者 Md Shahidul Islam Michael Horowitz Kupper A Wintergerst 《World Journal of Diabetes》 SCIE 2024年第8期1659-1662,共4页
Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,mo... Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,most studies have focused mainly on whether diabetes increases the NLRP3 inflammasome and associated pyroptosis in the heart of type 1 or type 2 diabetic rodent models,and whether various medications and natural products prevent the development of DCM,associated with decreased levels of cardiac NLRP3 inflammasome and pyroptosis.The direct link of NLRP3 inflammasome and associated pyroptosis to the pathogenesis of DCM remains unclear based on the limited evidence derived from the available studies,with the approaches of NLRP3 gene silencing or pharmaceutical application of NLRP3 specific inhibitors.We thus emphasize the requirement for more systematic studies that are designed to provide direct evidence to support the link,given that several studies have provided both direct and indirect evidence under specific conditions.This editorial emphasizes that the current investigation should be circumspect in its conclusion,i.e.,not overemphasizing its role in the pathogenesis of DCM with the fact of only significantly increased expression or activation of NLRP3 inflammasome and pyroptosis in the heart of diabetic rodent models.Only clear-cut evidence-based causative roles of NLRP3 inflammasome and pyroptosis in the pathogenesis of DCM can help to develop effective and safe medications for the clinical management of DCM,targeting these biomarkers. 展开更多
关键词 diabetic cardiomyopathy Nucleotide oligomerization domain NOD-like receptor protein 3 inflammasome Cardiac cell death PYROPTOSIS
下载PDF
Diabetic cardiomyopathy:Pathophysiology,diagnostic evaluation and management 被引量:63
13
作者 Joseph M Pappachan George I Varughese +1 位作者 Rajagopalan Sriraman Ganesan Arunagirinathan 《World Journal of Diabetes》 SCIE CAS 2013年第5期177-189,共13页
Diabetes affects every organ in the body and cardiovascular disease accounts for two-thirds of the mortality in the diabetic population.Diabetes-related heart disease occurs in the form of coronary artery disease(CAD)... Diabetes affects every organ in the body and cardiovascular disease accounts for two-thirds of the mortality in the diabetic population.Diabetes-related heart disease occurs in the form of coronary artery disease(CAD),cardiac autonomic neuropathy or diabetic cardiomyopathy(DbCM).The prevalence of cardiac failure is high in the diabetic population and DbCM is a common but underestimated cause of heart failure in diabetes.The pathogenesis of diabetic cardiomyopathy is yet to be clearly defined.Hyperglycemia,dyslipidemia and inflammation are thought to play key roles in the generation of reactive oxygen or nitrogen species which are in turn implicated.The myocardial interstitium undergoes alterations resulting in abnormal contractile function noted in DbCM.In the early stages of the disease diastolic dysfunction is the only abnormality,but systolic dysfunction supervenes in the later stages with impaired left ventricular ejection fraction.Transmitral Doppler echocardiography is usually used to assess diastolic dysfunction,but tissue Doppler Imaging and Cardiac Magnetic Resonance Imaging are being increasingly used recently for early detection of DbCM.The management of DbCM involves improvement in lifestyle,control of glucose and lipid abnormalities,and treatment of hypertension and CAD,if present.The role of vasoactive drugs and antioxidants is being explored.This review discusses the pathophysiology,diagnostic evaluation and management options of DbCM. 展开更多
关键词 diabetIC cardiomyopathy Cardiac AUTONOMIC NEUROPATHY Coronary artery disease Heart failure Transmitral Doppler ECHOCARDIOGRAPHY
下载PDF
Mechanisms underlying the impaired contractility of diabetic cardiomyopathy 被引量:13
14
作者 Marie-Louise Ward David J Crossman 《World Journal of Cardiology》 CAS 2014年第7期577-584,共8页
Cardiac dysfunction is a well-known consequence of diabetes,with sustained hyperglycaemia leading to the development of a cardiomyopathy that is independent of cardiovascular disease or hypertension.Animal models of d... Cardiac dysfunction is a well-known consequence of diabetes,with sustained hyperglycaemia leading to the development of a cardiomyopathy that is independent of cardiovascular disease or hypertension.Animal models of diabetes are commonly used to study the pathophysiology of diabetic cardiomyopathy,with the hope that increased knowledge will lead ultimately to better therapeutic strategies being developed.At physiological temperature,left ventricular trabeculae isolated from the streptozotocin rat model of type 1 diabetes showed decreased stress and prolonged relaxation,but with no evidence that decreased contractility was a result of altered myocardial Ca2+handling.Although sarcoplasmic reticulum(SR)Ca2+reuptake appeared slower in diabetic trabeculae,it was offset by an increase in actionpotential duration,thereby maintaining SR Ca2+content and favouring increased contraction force.Frequency analysis of t-tubule distribution by confocal imaging of ventricular tissue labeled with wheat germ agglutinin or ryanodine receptor antibodies showed a reduced T-power for diabetic tissue,but the differences were minor in comparison to other models of heart failure.The contractile dysfunction appeared to be the result of disrupted F-actin in conjunction with the increased typeⅠcollagen,with decreased myofilament Ca2+sensitivity contributing to the slowed relaxation. 展开更多
关键词 diabetic cardiomyopathy Heart failure CONTRACTILITY T-TUBULES Excitation-contraction coupling Calcium HOMEOSTASIS
下载PDF
Gestational diabetes from A to Z 被引量:11
15
作者 AbdelHameed Mirghani Dirar John Doupis 《World Journal of Diabetes》 SCIE CAS 2017年第12期489-511,共23页
Gestational diabetes mellitus(GDM) is defined as any degree of hyperglycaemia that is recognized for the first time during pregnancy. This definition includes cases of undiagnosed type 2 diabetes mellitus(T2 DM) ident... Gestational diabetes mellitus(GDM) is defined as any degree of hyperglycaemia that is recognized for the first time during pregnancy. This definition includes cases of undiagnosed type 2 diabetes mellitus(T2 DM) identified early in pregnancy and true GDM which develops later. GDM constitutes a greater impact on diabetes epidemic as it carries a major risk of developing T2 DM to the mother and foetus later in life. In addition, GDM has also been linked with cardiometabolic risk factors such as lipid abnormalities, hypertensive disorders and hyperinsulinemia. These might result in later development of cardiovascular disease and metabolic syndrome. The understanding of the different risk factors, the pathophysiological mechanisms and the genetic factors of GDM, will help us to identify the women at risk, to develop effective preventive measures and to provide adequate management of the disease. Clinical trials have shown that T2 DM can be prevented in women with prior GDM, by intensive lifestyle modification and by using pioglitazone and metformin. However, a matter of controversy surrounding both screening and management of GDM continues to emerge, despite several recent welldesigned clinical trials tackling these issues. The aim of this manuscript is to critically review GDM in a detailed and comprehensive manner, in order to provide a scientific analysis and updated write-up of different related aspects. 展开更多
关键词 diabetes in pregnancy Diagnostic criteria for gestational diabetes mellitus Gestational diabetes mellitus-related comorbidities Genetics of gestational diabetes mellitus Gestational diabetes mellitus Lipids abnormalities in gestational diabetes mellitus Management of gestational diabetes mellitus Medical nutrition therapy Pathophysiology of gestational diabetes mellitus Risk factors for gestational diabetes mellitus
下载PDF
Trace elements in diabetic cardiomyopathy:An electrophysiological overview 被引量:3
16
作者 Nihal Ozturk Yusuf Olgar Semir Ozdemir 《World Journal of Diabetes》 SCIE CAS 2013年第4期92-100,共9页
There is a growing body of evidence that Diabetes Mellitus leads to a specific cardiomyopathy apart from vascular disease and bring about high morbidity and mortality throughout the world.Recent clinical and experimen... There is a growing body of evidence that Diabetes Mellitus leads to a specific cardiomyopathy apart from vascular disease and bring about high morbidity and mortality throughout the world.Recent clinical and experimental studies have extensively demonstrated that this cardiomyopathy causes impaired cardiac performance manifested by early diastolic and late systolic dysfunction.This impaired cardiac performance most probably have emerged upon the expression and activity of regulatory proteins such as Na+/Ca2+exchanger,sarcoplasmic reticulum Ca2+-ATPase,ryanodine receptor and phospholamban.Over years many therapeutic strategies have been recommended for treatment of diabetic cardiomyopathy.Lately,inorganic elements have been suggested to have anti-diabetic effects due to their suggested ability to regulate glucose homeostasis,reduce oxidative stress or suppress phosphatases.Recent findings have shown that trace elements exert many biological effects including insulin-mimetic or antioxidant activity and in this manner they have been recommended as potential candidates for treatment of diabetes-induced cardiac complications,an effect based on their modes of action.Some of these trace elements are known to play an essential role as component of enzymes and thus modulate the organ function in physiological and pathological conditions.Besides,they can also manipulate redox state of the channels via antioxidant properties and thus contribute to the regulation of [Ca2+]i homeostasis and cardiac ion channels.On account of little information about some trace elements,we discussed the effect of vanadium,selenium,zinc and tungstate on diabetic heart complications. 展开更多
关键词 diabetIC cardiomyopathy ELECTROPHYSIOLOGY TRACE elements Insulin-mimetic ANTIOXIDANT
下载PDF
Is diabetic cardiomyopathy a specific entity? 被引量:8
17
作者 Mitja Letonja Danijel Petrovi 《World Journal of Cardiology》 CAS 2014年第1期8-13,共6页
Diabetes mellitus(DM) is characterised by hyperglycemia, insulin resistance and metabolic dysregulation leading to diastolic and systolic dysfunction in diabetes. In this review, the pathogenetic and pathomorphologica... Diabetes mellitus(DM) is characterised by hyperglycemia, insulin resistance and metabolic dysregulation leading to diastolic and systolic dysfunction in diabetes. In this review, the pathogenetic and pathomorphological changes leading to diastolic and systolic dysfunction in diabetes are discussed. Changes in metabolic signalling pathways, mediators and effectors contribute to the pathogenesis of cardiac dysfunction in DM called diabetic cardiomyopathy(DC). Echocardiographic studies report on the association between DM and the presence of cardiac hypertrophy and myocardial stiffness that lead to diastolic dysfunction. More recently reported echocardiographic studies with more sensitive techniques, such as strain analysis, also observed systolic dysfunction as an early marker of DC. Depression of systolic and diastolic function is continuum and the line of separation is artificial. To conclude, according to current knowledge, DC is expected to be a common single phenotype that is caused by different pathogenetic and pathomorphological changes leading to diastolic and systolic dysfunction in diabetes. 展开更多
关键词 diabetes mellitus diabetic cardiomyopathy PATHOGENESIS Diastolic dysfunction Systolic dysfunction Morphological changes APOPTOSIS
下载PDF
Role of novel biomarkers in diabetic cardiomyopathy 被引量:6
18
作者 Marko Kumric Tina Ticinovic Kurir +1 位作者 Josip A Borovac Josko Bozic 《World Journal of Diabetes》 SCIE 2021年第6期685-705,共21页
Diabetic cardiomyopathy(DCM)is commonly defined as cardiomyopathy in patients with diabetes mellitus in the absence of coronary artery disease and hypertension.As DCM is now recognized as a cause of substantial morbid... Diabetic cardiomyopathy(DCM)is commonly defined as cardiomyopathy in patients with diabetes mellitus in the absence of coronary artery disease and hypertension.As DCM is now recognized as a cause of substantial morbidity and mortality among patients with diabetes mellitus and clinical diagnosis is still inappropriate,various expert groups struggled to identify a suitable biomarker that will help in the recognition and management of DCM,with little success so far.Hence,we thought it important to address the role of biomarkers that have shown potential in either human or animal studies and which could eventually result in mitigating the poor outcomes of DCM.Among the array of biomarkers we thoroughly analyzed,long noncoding ribonucleic acids,soluble form of suppression of tumorigenicity 2 and galectin-3 seem to be most beneficial for DCM detection,as their plasma/serum levels accurately correlate with the early stages of DCM.The combination of relatively inexpensive and accurate speckle tracking echocardiography with some of the highlighted biomarkers may be a promising screening method for newly diagnosed diabetes mellitus type 2 patients.The purpose of the screening test would be to direct affected patients to more specific confirmation tests.This perspective is in concordance with current guidelines that accentuate the importance of an interdisciplinary team-based approach. 展开更多
关键词 diabetic cardiomyopathy Heart failure Biomarkers diabetes mellitus cardiomyopathy
下载PDF
Formononetin alleviates diabetic cardiomyopathy by inhibiting oxidative stress and upregulating SIRT1 in rats 被引量:6
19
作者 Manisha J.Oza Yogesh A.Kulkarni 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2020年第6期254-262,共9页
Objective:To evaluate the effect of formononetin on type 2 diabetic cardiomyopathy.Methods:Diabetes was induced by feeding high-fat diet for 2 weeks and administration of 35 mg/kg of streptozotocin in rats.Formononeti... Objective:To evaluate the effect of formononetin on type 2 diabetic cardiomyopathy.Methods:Diabetes was induced by feeding high-fat diet for 2 weeks and administration of 35 mg/kg of streptozotocin in rats.Formononetin was administered at 10,20 and 40 mg/kg for 16 weeks once a day.Plasma glucose,lipid parameters,and cardiac markers in blood samples were measured.Body weight and relative heart weight were recorded.Hemodynamic parameters,oxidative stress parameters and silence information regulator 1(SIRT1)expression in cardiac tissue were estimated.Histopathological changes in cardiac tissue were also observed.Results:Formononetin significantly reduced the levels of glucose,triglycerides,cholesterol,low density lipoprotein,creatine kinaseMB,lactate dehydrogenase and aspartate aminotransferase.In addition,formononetin significantly improved hemodynamic parameters,alleviated oxidative stress and increased SIRT1 expression.Conclusions:The study indicates that formononetin can improve hyperglycemia and hyperlipemia,reduce oxidative stress and increase SIRT1 expression.It can be a potential therapeutic agent for diabetic cardiomyopathy. 展开更多
关键词 cardiomyopathy FORMONONETIN Type 2 diabetes SIRT1 CREATININE KINASE Cardiac HYPERTROPHY
下载PDF
Diabetic cardiomyopathy: Pathophysiology, theories and evidence to date 被引量:18
20
作者 Lavanya Athithan Gaurav S Gulsin +1 位作者 Gerald P McCann Eylem Levelt 《World Journal of Diabetes》 2019年第10期490-510,共21页
The prevalence of type 2 diabetes(T2D)has increased worldwide and doubled over the last two decades.It features among the top 10 causes of mortality and morbidity in the world.Cardiovascular disease is the leading cau... The prevalence of type 2 diabetes(T2D)has increased worldwide and doubled over the last two decades.It features among the top 10 causes of mortality and morbidity in the world.Cardiovascular disease is the leading cause of complications in diabetes and within this,heart failure has been shown to be the leading cause of emergency admissions in the United Kingdom.There are many hypotheses and well-evidenced mechanisms by which diabetic cardiomyopathy as an entity develops.This review aims to give an overview of these mechanisms,with particular emphasis on metabolic inflexibility.T2D is associated with inefficient substrate utilisation,an inability to increase glucose metabolism and dependence on fatty acid oxidation within the diabetic heart resulting in mitochondrial uncoupling,glucotoxicity,lipotoxicity and initially subclinical cardiac dysfunction and finally in overt heart failure.The review also gives a concise update on developments within clinical imaging,specifically cardiac magnetic resonance studies to characterise and phenotype early cardiac dysfunction in T2D.A better understanding of the pathophysiology involved provides a platform for targeted therapy in diabetes to prevent the development of early heart failure with preserved ejection fraction. 展开更多
关键词 diabetIC cardiomyopathy Cardiac metabolism MYOCARDIAL STEATOSIS MYOCARDIAL strain
下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部