期刊文献+
共找到77,748篇文章
< 1 2 250 >
每页显示 20 50 100
Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs 被引量:2
1
作者 SHEN Anjiang HU Anping +4 位作者 CHENG Ting LIANG Feng PAN Wenqing FENG Yuexing ZHAO Jianxin 《Petroleum Exploration and Development》 2019年第6期1127-1140,共14页
Through the development and calibration of a reference material which is 209.8 Ma old using a newly-developed Laser Ablation(LA)Multi-Collector Inductively Coupled Plasma Mass Spectrometry(MC-ICP-MS)technique,we succe... Through the development and calibration of a reference material which is 209.8 Ma old using a newly-developed Laser Ablation(LA)Multi-Collector Inductively Coupled Plasma Mass Spectrometry(MC-ICP-MS)technique,we successfully overcome the difficulty in sampling and dating ultra-low U-Pb ancient marine carbonates,which was previously untenable by isotope dilution(ID)methods.We developed the LA-MC-ICP-MS in situ U-Pb dating technique for ancient marine carbonates for the study of diagenesis-porosity evolution history in Sinian Dengying Formation,Sichuan Basin.By systematically dating of dolomitic cements from vugs,matrix pores and fractures,we found that the burial and diagenetic process of dolomite reservoirs in Sinian Dengying Formation was characterized by progressive filling-up of primary pores and epigenic dissolution vugs.The filling of vugs happened in three stages,early Caledonian,late Hercynian-Indosinian and Yanshanian-Himalayan,while the filling of matrix pores mainly took place in early Caledonian.The unfilled residual vugs,pores and fractures constitute the main reservoir sapce.Based on the above knowledge,we established the diagenesis-porosity evolution history of the dolomite reservoir in Sinian Dengying Formation,Sichuan Basin.These findings are highly consistent with the tectonic-burial and basin thermal histories of the study area.Our study confirmed the reliability of this in situ U-Pb dating technique,which provides an effective way for the investigation of diagenesis-porosity evolution history and evaluation of porosity in ancient marine carbonate reservoirs before hydrocarbon migration. 展开更多
关键词 laser ablation in-situ U-PB DATING SICHUAN Basin SINIAN Dengying Formation diagenesis-porosity evolution CARBONATES
下载PDF
Diagenesis-porosity evolution and“sweet spot”distribution of low permeability reservoirs:A case study from Oligocene Zhuhai Formation in Wenchang A sag,Pear River Mouth Basin,northern South China Sea 被引量:1
2
作者 YOU Li XU Shouli +3 位作者 LI Cai ZHANG Yingzhao ZHAO Zhanjie ZHU Peiyuan 《Petroleum Exploration and Development》 2018年第2期251-263,共13页
The characteristics of low permeability reservoirs and distribution of sweet spots in the Oligocene Zhuhai Formation of Wenchang A sag, Pearl River Basin were investigated by core observation and thin section analysis... The characteristics of low permeability reservoirs and distribution of sweet spots in the Oligocene Zhuhai Formation of Wenchang A sag, Pearl River Basin were investigated by core observation and thin section analysis. The study results show that there develop the fine, medium and coarse sandstone reservoirs of tidal flat–fan delta facies, which are of mostly low permeability and locally medium permeability. There are two kinds of pore evolution patterns: oil charging first and densification later, the reservoirs featuring this pattern are mainly in the third member of Zhuhai Formation between the south fault zone and the sixth fault zone, and the pattern of densification first and gas charging later is widespread across the study area. Strong compaction and local calcium cementation are the key factors causing low permeability of the reservoirs in the Zhuhai Formation. Thick and coarse grain sand sedimentary body is the precondition to form "sweet spot" reservoirs. Weak compaction and cementation, dissolution, early hydrocarbon filling and authigenic chlorite coating are the main factors controlling formation of "sweet spot" reservoir. It is predicted that there develop between the south fault and sixth fault zones the Class Ⅰ "sweet spot" in medium compaction zone, Class Ⅱ "sweet spot" in nearly strong compaction zone, Class Ⅲ "sweet spot" reservoir in the nearly strong to strong compaction zone with oil charging at early stage, and Class IV "sweet spot" reservoir in the strong compaction and authigenic chlorite coating protection zone in the sixth fault zone. 展开更多
关键词 low permeability reservoir pore evolution hydrocarbon charging 'sweet spot' DISTRIBUTION Zhuhai Formation OLIGOCENE Wenchang A SAG northern South China Sea
下载PDF
Carbon Emission Effects Driven by Evolution of Chinese Dietary Structure from 1987 to 2020 被引量:1
3
作者 ZHU Yuanyuan ZHANG Yan ZHU Xiaohua 《Chinese Geographical Science》 SCIE CSCD 2024年第1期181-194,共14页
Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research ob... Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern. 展开更多
关键词 dietary structure structural evolution carbon emission effects carbon neutrality China
下载PDF
Tuning electronic structure of RuO_(2)by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium 被引量:1
4
作者 Qing Qin Tiantian Wang +7 位作者 Zijian Li Guolin Zhang Haeseong Jang Liqiang Hou Yu Wang Min Gyu Kim Shangguo Liu Xien Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期94-102,I0003,共10页
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ... The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER. 展开更多
关键词 ELECTROCATALYST Acidic oxygen evolution reaction Electronic structure engineering DURABILITY Reaction barrier
下载PDF
Damage evolution of rock-encased-backfill structure under stepwise cyclic triaxial loading 被引量:1
5
作者 Xin Yu Yuye Tan +4 位作者 Weidong Song John Kemeny Shengwen Qi Bowen Zheng Songfeng Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期597-615,共19页
Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB ... Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations. 展开更多
关键词 Rock and backfill Triaxial cyclic loading Volume fraction Damage evolution 3D visualization
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction
6
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution Mechanical flexibility Hydrogen evolution reaction
下载PDF
Microdynamic mechanical properties and fracture evolution mechanism of monzogabbro with a true triaxial multilevel disturbance method
7
作者 Zhi Zheng Bin Deng +3 位作者 Hong Liu Wei Wang Shuling Huang Shaojun Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期385-411,共27页
The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the... The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated. 展开更多
关键词 True triaxial disturbance test Mechanical properties Fracture evolution mechanism Disturbance-induced damage evolution Failure mechanism and precursor
下载PDF
Identification of S-RNase genotype and analysis of its origin and evolutionary patterns in Malus plants
8
作者 Zhao Liu Yuan Gao +10 位作者 Kun Wang Jianrong Feng Simiao Sun Xiang Lu Lin Wang Wen Tian Guangyi Wang Zichen Li Qingshan Li Lianwen Li Dajiang Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1205-1221,共17页
Identification of the S genotype of Malus plants will greatly promote the discovery of new genes,the cultivation and production of apple,the breeding of new varieties,and the origin and evolution of self-incompatibili... Identification of the S genotype of Malus plants will greatly promote the discovery of new genes,the cultivation and production of apple,the breeding of new varieties,and the origin and evolution of self-incompatibility in Malus plants.In this experiment,88 Malus germplasm resources,such as Aihuahong,Xishuhaitang,and Reguanzi,were used as materials.Seven gene-specific primer combinations were used in the genotype identification.PCR amplification using leaf DNA produced a single S-RNase gene fragment in all materials.The results revealed that 70 of the identified materials obtained a complete S-RNase genotype,while only one S-RNase gene was found in 18 of them.Through homology comparison and analysis,13 S-RNase genotypes were obtained:S_(1)S_(2)(Aihuahong,etc.),S_(1)S_(28)(Xixian Haitang,etc.),S_(1)S_(51)(Hebei Pingdinghaitang),S_(1)S_(3)(Xiangyangcun Daguo,etc.),S_(2)S_(3)(Zhaiyehaitang,etc.),S_(3)S_(51)(Xishan 1),S_(3)S_(28)(Huangselihaerde,etc.),S_(2)S_(28)(Honghaitang,etc.),S_(4)S_(28)(Bo 11),S_(7)S_(28)(Jiuquan Shaguo),S_(10)S_e(Dongchengguan 13),S_(10)S_(21)(Dongxiangjiao)and S_(3)S_(51)(Xiongyue Haitang).Simultaneously,the frequency of the S gene in the tested materials was analyzed.The findings revealed that different S genes had varying frequencies in Malus resources,as well as varying frequencies between intraspecific and interspecific.S_(3) had the highest frequency of 68.18%,followed by S_(1)(42.04%).In addition,the phylogenetic tree and origin evolution analysis revealed that the S gene differentiation was completed prior to the formation of various apple species,that cultivated species also evolved new S genes,and that the S_(50) gene is the oldest S allele in Malus plants.The S_(1),S_(29),and S_(33) genes in apple-cultivated species,on the other hand,may have originated in M.sieversii,M.hupehensis,and M.kansuensis,respectively.In addition to M.sieversii,M.kansuensis and M.sikkimensis may have also played a role in the origin and evolution of some Chinese apples. 展开更多
关键词 MALUS S-RNase genotype SELF-INCOMPATIBILITY origin and evolution
下载PDF
Mg/MgO interfaces as efficient hydrogen evolution cathodes causing accelerated corrosion of additive manufactured Mg alloys:A DFT analysis
9
作者 Man-Fai Ng Kai Xiang Kuah +1 位作者 Teck Leong Tan Daniel John Blackwood 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期110-119,共10页
The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide incl... The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium. 展开更多
关键词 MAGNESIUM Magnesium oxide Interface Hydrogen evolution DFT
下载PDF
Temporal and spatial evolution of global major grain trade patterns
10
作者 Ziqi Yin Jiaxuan Hu +3 位作者 Jing Zhang Xiangyang Zhou Lingling Li Jianzhai Wu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1075-1086,共12页
The complex and volatile international landscape has significantly impacted global grain supply security. This study uses a complex network analysis model to examine the evolution and trends of the global major grain ... The complex and volatile international landscape has significantly impacted global grain supply security. This study uses a complex network analysis model to examine the evolution and trends of the global major grain trade from 1990 to 2020, focusing on network topology, centrality ranking, and community structure. There are three major findings. First, the global major grain trade network has expanded in scale, with a growing emphasis on diversification and balance. During the study period, the United States, Canada, China, and Brazil were the core nodes of the network. Grain-exporting countries were mainly situated in Asia, the Americas, and Europe, and importing countries in Asia, Africa, and Europe. Second, a significant increase in the number of high centrality countries with high export capacity occurred, benefiting from natural advantages such as fertile land and favorable climates. Third, the main global grain trade network is divided into four communities, with the Americas-Europe community being the largest and most widespread. The formation of the community pattern was influenced by geographic proximity, driven by the core exporting countries. Therefore, the world needs to enhance the existing trade model, promote the multi-polarization of the grain trade network, and establish a global vision for the future community. Countries and regions should participate actively in global grain trade security governance and institutional reform, expand trade links with other countries, and optimize import and export policies to reduce trade risks. 展开更多
关键词 grain trade pattern evolution complex network
下载PDF
Precisely Control Relationship between Sulfur Vacancy and H Absorption for Boosting Hydrogen Evolution Reaction
11
作者 Jing Jin Xinyao Wang +4 位作者 Yang Hu Zhuang Zhang Hongbo Liu Jie Yin Pinxian Xi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期14-24,共11页
Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performan... Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performance for hydrogen evolution reaction(HER). With the VS concentration change from 2.4% to 8.5%, the H* adsorption strength on S sites changed and NiS_(2)-VS 5.9% shows the most optimized H* adsorption for HER with an ultralow onset potential(68 m V) and has long-term stability for 100 h in 1 M KOH media. In situ attenuated-total-reflection Fourier transform infrared spectroscopy(ATR-FTIRS) measurements are usually used to monitor the adsorption of intermediates. The S-H* peak of the Ni S_(2)-VS 5.9% appears at a very low voltage, which is favorable for the HER in alkaline media. Density functional theory calculations also demonstrate the Ni S_(2)-VS 5.9% has the optimal |ΔG^(H*)| of 0.17 e V. This work offers a simple and promising pathway to enhance catalytic activity via precise vacancies strategy. 展开更多
关键词 Hydrogen evolution reaction S vacancies NANOSHEET H Adsorption
下载PDF
Evolution of molecular structure of TATB under shock loading from transient Raman spectroscopic technique
12
作者 Hongliang Kang Xue Yang +5 位作者 Wenshuo Yuan Lei Yang Xinghan Li Fusheng Liu Zhengtang Liu Qijun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期613-620,共8页
By combination of the transient Raman spectroscopic measurement and the density functional theoretical calculations,the structural evolution and stability of TATB under shock compression was investigated.Due to the im... By combination of the transient Raman spectroscopic measurement and the density functional theoretical calculations,the structural evolution and stability of TATB under shock compression was investigated.Due to the improvement in synchronization control between two-stage light gas gun and the transient Raman spectra acquisition,as well as the sample preparation,the Raman peak of the N-O mode of TATB was firstly observed under shock pressure up to 13.6 GPa,noticeably higher than the upper limit of 8.5 GPa reported in available literatures.By taking into account of the continuous shift of the main peak and other observed Raman peaks,we did not distinguish any structural transition or any new species.Moreover,both the present Raman spectra and the time-resolved radiation of TATB during shock loading showed that TATB exhibits higher chemical stability than previous declaration.To reveal the detailed structural response and evolution of TATB under compression,the density functional theoretical calculations were conducted,and it was found that the pressure make N-O bond lengths shorter,nitro bond angles larger,and intermolecular and intra-molecular hydrogen bond interactions enhanced.The observed red shift of Raman peak was ascribed to the abnormal enhancement of H-bound effect on the scissor vibration mode of the nitro group. 展开更多
关键词 TATB Raman spectra Structural evolution Shock loading
下载PDF
Insight into structure evolution of carbon nitrides and its energy conversion as luminescence
13
作者 Hao Zhang Jingwei Zhang +4 位作者 Wenjie Chen Minjia Tao Xianguang Meng Yuanjian Zhang Guifu Zuo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期37-60,共24页
A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C3N4)have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high lumines... A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C3N4)have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted. 展开更多
关键词 carbon nitride CHEMILUMINESCENCE ELECTROCHEMILUMINESCENCE energy conversion PHOTOLUMINESCENCE structural evolution
下载PDF
Valence electronic engineering of superhydrophilic Dy-evoked Ni-MOF outperforming RuO_(2) for highly efficient electrocatalytic oxygen evolution
14
作者 Zhiyang Huang Miao Liao +6 位作者 Shifan Zhang Lixia Wang Mingcheng Gao Zuyang Luo Tayirjan Taylor Isimjan Bao Wang Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期244-252,I0007,共10页
Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy ... Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts. 展开更多
关键词 Dy@Ni-MOF Dy incorporation Electronic interaction SUPERHYDROPHILICITY Oxygen evolution reaction
下载PDF
Spatial evolution and spatial production of traditional villages from "backward poverty villages" to "ecologically well-off villages": Experiences from the hinterland of national nature reserves in China
15
作者 Zhang Yiyi LI Yangbing 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1100-1118,共19页
With the rapid urbanization process,the space of traditional villages in China is undergoing significant changes.Studying the spatial evolution of traditional villages is significant in promoting rural spatial transfo... With the rapid urbanization process,the space of traditional villages in China is undergoing significant changes.Studying the spatial evolution of traditional villages is significant in promoting rural spatial transformation and realizing rural revitalization and sustainable rural development.Based on the traceability analysis of spatial production theory,this paper constructed an analytical framework for the spatial production evolution of traditional villages,analyzed the spatial evolution process and characteristics of traditional villages by using buffer analysis,spatial syntax,and other research methods,and revealed the characteristics of the spatial production evolution of traditional villages and the driving mechanism.The results show that:(1)The village spatial formation and development follow the village life cycle theory and usually develop from embryonic villages to diversified and integrated villages;(2)The evolution of village spatial production is characterized by the diversity of material space,the sublimation of daily life space,and the integration of social system space and generalization of emotional space;(3)The evolution of village spatial production from backward and poor village to ecologically well-off village is influenced by a combination of factors;(4)The village has formed a spatial structure of"people-land-scape-culture-industry",realized comprehensive reconstruction and spatial reproduction.The study results reflect the spatial evolution characteristics of traditional villages in mountainous areas in a more comprehensive way,which helps to promote the protection and development of traditional villages in mountainous areas and,to a certain extent,provides a reference for the development of rural revitalization. 展开更多
关键词 Traditional villages Spatial production Spatial evolution Spatial reconstruction
下载PDF
Heterostructured Pt-Ni_(3)Mo_(3)N formed via ammonia-containing polyoxometalates for highly efficient electrocatalytic hydrogen evolution in acid medium
16
作者 Bianqing Ren Xue Gong +5 位作者 Jing Cao Dezheng Zhang Zizhun Wang Ping Song Ce Han Weilin Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期698-704,共7页
Constructing heterostructured nanohybrid is considered as a prominent route to fabricate alternative electrocatalysts to commercial Pt/C for hydrogen evolution reaction(HER).In this work,(NH_(4))_(4)[NiH_(6)Mo_(6)O_(4... Constructing heterostructured nanohybrid is considered as a prominent route to fabricate alternative electrocatalysts to commercial Pt/C for hydrogen evolution reaction(HER).In this work,(NH_(4))_(4)[NiH_(6)Mo_(6)O_(4)]·5H_(2)O polyoxometalates(NiMo_(6))are adopted as the cluster precursors for simple fabrication of heterostructured Pt-Ni_(3)Mo_(3)N nanohybrids supported by carbon black(Pt-Ni_(3)Mo_(3)N/C)without using additional N sources.The improved porosity and enhanced electronic interaction of Pt-Ni_(3)Mo_(3)N/C should be attributed to the integration of Pt with NiMo_(6),which favors the mass transport,promotes the formation of exposed catalytic sites,and benefits the regulation of intrinsic activity.Thus,the as-obtained Pt-Ni_(3)Mo_(3)N/C exhibits impressive and durable HER performance as indicated by the low overpotential of 13.7 mV at the current density of 10 mA cm^(-2) and the stable overpotential during continuous working at 100 mA cm^(-2) for 100 h.This work provides significant insights for the synthesis of new highly active heterostructured electrocatalysts for renewable energy devices. 展开更多
关键词 POLYOXOMETALATES Cluster precursors Heterostructured nanohybrids Hydrogen evolution reaction ELECTROCATALYSIS
下载PDF
Molecular-level proton acceptor boosts oxygen evolution catalysis to enable efficient industrial-scale water splitting
17
作者 Yaobin Wang Qian Lu +7 位作者 Xinlei Ge Feng Li Le Chen Zhihui Zhang Zhengping Fu Yalin Lu Yang Song Yunfei Bu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期344-355,共12页
Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy... Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy to produce an efficient OER catalyst that can boost industrial-scale water splitting.Molecular-level phosphate(-PO_(4))group is introduced to modify the surface of PrBa_(0.5)Ca_(0.5)Co_(2)O_(5)+δ(PBCC).The achieved catalyst(PO_(4)-PBCC)exhibits significantly enhanced catalytic performance in alkaline media.Based on the X-ray absorption spectroscopy results and density functional theory(DFT)calculations,the PO_(4)on the surface,which is regarded as the Lewis base,is the key factor to overcome the kinetic limitation of the proton transfer process during the OER.The use of the catalyst in a membrane electrode assembly(MEA)is further evaluated for industrial-scale water splitting,and it only needs a low voltage of 1.66 V to achieve a large current density of 1 A cm^(-2).This work provides a new molecular-level strategy to develop highly efficient OER electrocatalysts for industrial applications. 展开更多
关键词 Oxygen evolution reaction NANOFIBER Water splitting Proton acceptor PEROVSKITE
下载PDF
Rational construction of CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S S-scheme heterojunction photocatalyst for extraordinary photothermal-assisted photocatalytic H_(2) evolution
18
作者 Dong Zhang Minghui Zhu +7 位作者 Ran Qin Peixian Chen Maoye Yin Dafeng Zhang Junchang Liu Hengshuai Li Xipeng Pu Peiqing Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期240-249,共10页
Rational design of photocatalyst to maximize the use of sunlight is one of the issues to be solved in photocatalysis technology.In this study,the CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S(CFO@C/CZS)S-scheme photocatalyst with... Rational design of photocatalyst to maximize the use of sunlight is one of the issues to be solved in photocatalysis technology.In this study,the CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S(CFO@C/CZS)S-scheme photocatalyst with photothermal effect was synthesized by ultrasonic self-assembly combined with calcination.The dark CFO@C absorbed visible light and partly converted into heat to promote the hydrogen evolution reaction.The presence of heterojunctions inhibited the photogenerated electron-hole recombination.The graphite-carbon layer provided a stable channel for electron transfer,and the presence of magnetic CFO made recycle easier.Under the action of photothermal assistance and heterojunction,the hydrogen evolution rate of the optimal CFO@C/CZS was 80.79 mmol g^(-1) h^(-1),which was 2.55 times and 260.61 times of that of pure CZS and CFO@C,respectively.Notably,the composite samples also exhibit excellent stability and a wide range of environmental adaptability.Through experimental tests and first-principles simulation calculation methods,the plausible mechanism of photoactivity enhancement was proposed.This work provided a feasible strategy of photothermal assistance for the development of heterojunction photocatalysts with distinctive hydrogen evolution. 展开更多
关键词 Photothermal effect S-scheme heterojunction Photocatalytic hydrogen evolution First-principles calculations
下载PDF
Microwave shock motivating the Sr substitution of 2D porous GdFeO_(3) perovskite for highly active oxygen evolution
19
作者 Jinglin Xian Huiyu Jiang +10 位作者 Zhiao Wu Huimin Yu Kaisi Liu Miao Fan Rong Hu Guangyu Fang Liyun Wei Jingyan Cai Weilin Xu Huanyu Jin Jun Wan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期232-241,I0006,共11页
The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional ... The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite. 展开更多
关键词 2D materials PEROVSKITE MICROWAVE ELECTROCATALYSIS Oxygen evolution reaction
下载PDF
Optimizing 3d spin polarization of CoOOH by in situ Mo doping for efficient oxygen evolution reaction
20
作者 Zhichao Jia Yang Yuan +6 位作者 Yanxing Zhang Xiang Lyu Chenhong Liu Xiaoli Yang Zhengyu Bai Haijiang Wang Lin Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期236-244,共9页
Transition-metal oxyhydroxides are attractive catalysts for oxygen evolution reactions(OERs).Further studies for developing transition-metal oxyhydroxide catalysts and understanding their catalytic mechanisms will ben... Transition-metal oxyhydroxides are attractive catalysts for oxygen evolution reactions(OERs).Further studies for developing transition-metal oxyhydroxide catalysts and understanding their catalytic mechanisms will benefit their quick transition to the next catalysts.Herein,Mo-doped CoOOH was designed as a high-performance model electrocatalyst with durability for 20 h at 10 mAcm−2.Additionally,it had an overpotential of 260 mV(glassy carbon)or 215 mV(nickel foam),which was 78 mV lower than that of IrO_(2)(338 mV).In situ,Raman spectroscopy revealed the transformation process of CoOOH.Calculations using the density functional theory showed that during OER,doped Mo increased the spin-up density of states and shrank the spin-down bandgap of the 3d orbits in the reconstructed CoOOH under the electrochemical activation process,which simultaneously optimized the adsorption and electron conduction of oxygen-related intermediates on Co sites and lowered the OER overpotentials.Our research provides new insights into the methodical planning of the creation of transition-metal oxyhydroxide OER catalysts. 展开更多
关键词 ELECTROCATALYST in situ Raman Mo-doped CoOOH oxygen evolution reaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部