Diagnostic equipment can contribute significantly to production and quality.Maintenance budget however is limited so that having a systematic method for allocating part ofit to diagnostic equipment is of great potenti...Diagnostic equipment can contribute significantly to production and quality.Maintenance budget however is limited so that having a systematic method for allocating part ofit to diagnostic equipment is of great potential value. In this paper, a deterministic dynamicprogramming model for assisting in determining the optimum policy for investment in diagnosticequipment for multistage production systems is developed. The optimum pelticy is determined interms of the amount of equipment used at each stage of production and yields the maximumreturn for the entire system.展开更多
Monochromatic x-ray imaging is an essential method for plasma diagnostics related to density information.Large-field high-resolution monochromatic imaging of a He-like iron(Fe XXV)Kαcharacteristic line(6.701 keV)for ...Monochromatic x-ray imaging is an essential method for plasma diagnostics related to density information.Large-field high-resolution monochromatic imaging of a He-like iron(Fe XXV)Kαcharacteristic line(6.701 keV)for laser plasma diagnostics was achieved using a developed toroidal crystal x-ray imager.A high-index crystal orientation Ge(531)wafer with a Bragg angle of 75.37°and the toroidal substrate were selected to obtain sufficient diffraction efficiency and compensate for astigmatism under oblique incidence.A precise offline assembly method of the toroidal crystal imager based on energy substitution was proposed,and a spatial resolution of 3-7μm was obtained by toroidal crystal imaging of a 600 line-pairs/inch Au grid within an object field of view larger than 1.0 mm.The toroidal crystal x-ray imager has been successfully tested via side-on backlight imaging experiments of the sinusoidal modulation target and a 1000 line-pairs/inch Au grid with a linewidth of 5μm using an online alignment method based on dual positioning balls to indicate the target and backlighter.This paper describes the optical design,adjustment method,and experimental results of a toroidal crystal system in a laboratory and laser facility.展开更多
Background: Nosocomial infections have become a major challenge in healthcare facilities as they affect the quality of medical care. Radiological imaging plays a crucial role in medical diagnosis. However, the equipme...Background: Nosocomial infections have become a major challenge in healthcare facilities as they affect the quality of medical care. Radiological imaging plays a crucial role in medical diagnosis. However, the equipment and accessories used increase the risk of transmission of nosocomial bacteria. Objective: This study aims to reveal the extent and nature of microbiological contamination in four hospital diagnostic imaging departments to determine their potential role in the spread of nosocomial bacteria and to evaluate the effectiveness of routine daily disinfection practices in controlling microorganisms in diagnostic imaging departments. Methods & Results: In each department, swabs were taken from the surfaces of selected parts of the equipment and accessories three times a day (early morning, noon, and evening) for five consecutive days. Bacteria were isolated from 65 swabs (36.1% of all samples). The bacteria were isolated 3 times (4.6%) in the morning, 16 times (24.6%) at midday, and 46 times (70.7%) in the evening. The bacteria isolated were Escherichia coli (isolated 34 times;52.3%), Staphylococcus aureus (20 times;30.8%), Staphylococcus epidermidis (6 times;9.3%), and Klebsiella species (5 times;7.7%). Discussion & Conclusion: Findings demonstrated that radiology equipment and accessories are not free of bacteria and further improvements in the sterilization and disinfection of radiology equipment and accessories are needed to protect staff and patients from nosocomial infections.展开更多
A diagnostic system of soft x-ray diode-array was set up for HT-7 superconducting tokamak. The system consists of two slot-aperture cameras and is capable of measuring the soft x-ray emission from the plasma on HT-7 d...A diagnostic system of soft x-ray diode-array was set up for HT-7 superconducting tokamak. The system consists of two slot-aperture cameras and is capable of measuring the soft x-ray emission from the plasma on HT-7 device with a high resolution in space and a high response in time. Both cameras, located separately in a horizontal port and a vertical port each with thirty-seven detectors of An-Si surface-barrier diode (SBD) can view the same toroidal cross-section of the plasma from different poloidal chords. In this paper, the structure, principle and performance of the diagnostic system are described and some experimental results observed are presented.展开更多
X-Ray sources, detectors and optical components are now used in a wide range of applications. What is crucial is the absolute calibration of such devices to permit a quantitative assessment of the system under study. ...X-Ray sources, detectors and optical components are now used in a wide range of applications. What is crucial is the absolute calibration of such devices to permit a quantitative assessment of the system under study. A new X-ray laboratory has been built in Frascati (ENEA) to develop diagnostics for nuclear fusion experiments and study applications of these X-ray techniques in other domains, like new material science, non destructive tests and so on. An in-house developed selfconsistent calibration procedure is described that permits the absolute calibration of sources (X-ray emitted fluxes) and detectors (detection efficiencies) as function of the X-ray photon energy, in the range 2 - 120 keV. The calibration procedure involves the use of an in-house developed code that also predicts the spectral response of any detector in any experimental condition that can be setup in the laboratory. The procedure has been then applied for the calibration and characterisation of gas and solid state imaging detectors, such as Medipix-2, GEM gas detector, CCD camera, Cd-Te C-MOS imager, demonstrating the versatility of the method developed here.展开更多
A novel real time fast electron bremsstrahlung (FEB) diagnostic system based on the lutetium yttrium oxyorthosilicate scintillators (LYSO) and silicon photomultipliers (SiPM) has been developed for tokamak.The diagnos...A novel real time fast electron bremsstrahlung (FEB) diagnostic system based on the lutetium yttrium oxyorthosilicate scintillators (LYSO) and silicon photomultipliers (SiPM) has been developed for tokamak.The diagnostic system is dedicated to study the FEB emission in the hard x-ray (HXR) energy range between 10 and 200 keV during the lower hybrid current drive.The system consists of a detection module and three data acquisition and processing (DAP)boards.The detection module consists of annulus LYSO-SiPM detector array and a 12-channel preamplifier module.The DAP boards upload the data to the host computer for displaying and storing through PXI bus.The time and space resolutions of the system are 10 ms and 4 cm,respectively.The experimental results can show the evolution over time and the spatial distribution of FEB.This paper presents the system performance and typical discharge results.展开更多
Medical diagnostic tables are widely used inthemedical diagnostic equipment. For multifarious diagnostic needs, the medical diagnostic table works in various operating modes. In order to ensure patient safety, safety ...Medical diagnostic tables are widely used inthemedical diagnostic equipment. For multifarious diagnostic needs, the medical diagnostic table works in various operating modes. In order to ensure patient safety, safety factor of medical diagnostic table must meet safety requirement. The paper puts forward a method to find relations between key parameters and stress of table, identify maximum stress modes, reduce modes number of load test, and remove conservative high stress areas from finite element analysis result, by synthesizingthestress result of finite element analysis and measurement data for various operating modes of medical diagnostic table. It will help shorten test time, avoid over strength design, and reduce table’s cost. An application example of the method is presented by evaluating a specific CT medical diagnostictable. This method can be a reference for safety evaluation of all medical diagnostic tables.展开更多
The ongoing coronavirus disease 2019(COVID-19)pandemic continues to present diagnostic challenges.The use of thoracic radiography has been studied as a method to improve the diagnostic accuracy of COVID-19.The‘Living...The ongoing coronavirus disease 2019(COVID-19)pandemic continues to present diagnostic challenges.The use of thoracic radiography has been studied as a method to improve the diagnostic accuracy of COVID-19.The‘Living’Cochrane Systematic Review on the diagnostic accuracy of imaging tests for COVID-19 is continuously updated as new information becomes available for study.In the most recent version,published in March 2021,a meta-analysis was done to determine the pooled sensitivity and specificity of chest X-ray(CXR)and lung ultrasound(LUS)for the diagnosis of COVID-19.CXR gave a sensitivity of 80.6%(95%CI:69.1-88.6)and a specificity of 71.5%(95%CI:59.8-80.8).LUS gave a sensitivity rate of 86.4%(95%CI:72.7-93.9)and specificity of 54.6%(95%CI:35.3-72.6).These results differed from the findings reported in the recent article in this journal where they cited the previous versions of the study in which a metaanalysis for CXR and LUS could not be performed.Additionally,the article states that COVID-19 could not be distinguished,using chest computed tomography(CT),from other respiratory diseases.However,the latest review version identifies chest CT as having a specificity of 80.0%(95%CI:74.9-84.3),which is much higher than the previous version which indicated a specificity of 61.1%(95%CI:42.3-77.1).Therefore,CXR,chest CT and LUS have the potential to be used in conjunction with other methods in the diagnosis of COVID-19.展开更多
The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were prop...The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were proposed to use together with rapid digital protection against short-circuit regimes in transformer windings. This paper presents an application’s experience of LVI-testing, some results of the use of Frequency Response Analysis (FRA) to check the condition of transformer windings and infra-red control results of electrical equipment. The LVI method and short-circuit inductive reactance measurements are sensitive for detecting such faults as radial, axial winding deformations, a twisting of low-voltage or regulating winding, a losing of winding’s pressing and others.展开更多
Currently,with the advent of high-repetition-rate laser-plasma experiments,the demand for online diagnosis for the X-ray spectrum is increasing because the laser-plasma-generated X-ray spectrum is very important for c...Currently,with the advent of high-repetition-rate laser-plasma experiments,the demand for online diagnosis for the X-ray spectrum is increasing because the laser-plasma-generated X-ray spectrum is very important for characterizing electron dynamics and applications.In this study,scintillators and silicon PIN(P-type–intrinsic-N-type semiconductor)diodes were used to construct a wideband online filter stack spectrometer.The X-ray sensor and filter arrangement was optimized using a genetic algorithm to minimize the condition number of the response matrix.Consequently,the unfolding error was significantly reduced based on numerical experiments.The detector responses were quantitatively calibrated by irradiating the scintillator and PIN diode with various nuclides and comparing the measuredγ-ray peaks.A prototype 15-channel spectrometer was developed by integrating an X-ray detector with front-and back-end electronics.The prototype spectrometer could record X-ray pulse signals at a repetition rate of 1 kHz.Furthermore,an optimized spectrometer was employed to record the real-time spectra of laser-driven bremsstrahlung sources.This optimized spectrometer offers a compact solution for spectrum diagnostics of ultrashort X-ray pulses,exhibiting improved accuracy in terms of spectrum measurements and repetition rates,and could be widely used in next-generation high-repetition-rate high-power laser facilities.展开更多
Diagnostic Reference Levels (DRLs) are indicators that allow assessing the quality of equipment and procedures from the point of view of the doses delivered to patients and subsequently initiate corrective actions if ...Diagnostic Reference Levels (DRLs) are indicators that allow assessing the quality of equipment and procedures from the point of view of the doses delivered to patients and subsequently initiate corrective actions if necessary. The purpose of this study is to encourage health professionals to investigate patient radiation doses and to determine whether those doses comply with the principles of radiation protection in medical fields so as to improve practices by reducing patient exposure without reducing clinical effectiveness. To perform this work, we have investigated patient doses for different radiological examinations from six (6) medical centers in Dakar, including the following nine routine types: chest (PA), abdomen (AP), pelvis (AP), cervical spine (AP), lumbar spine (AP, Lat), hip (AP), thoracic spine (AP, Lat). Three types of data were collected, <em>i.e.</em>, X-ray tube machine data, patient data and output measurements. The data were analyzed statistically and the median, minimum, maximum, and third quartile values were calculated and displayed throughout boxplots graphs for all exams and medical centers. The two sigma range (95% confidence interval) was also checked. Comparison of third quartiles of Entrance Surface Dose (ESD) and Dose Area Product (DAP) by type of examination with recommended international DRLs was performed. The third quartile of ESD for pelvis (AP) and thoracic spine (AP) was up to 16% and 38% higher, respectively than their corresponding DRLs in the European Commission Report RP 180 Part 2. For all exams, except thoracic spine (lat), the third quartiles of the dose area product were higher than the corresponding DRLs in the above report. The source of dose variability between medical centers was related to many parameters such as poor radiographic techniques, lack of modern X-ray machines and adequately documented radiation protection practices. The results show the need to develop protocols for dose measurement as well as to carry out quality assurance programs and dose optimization in Senegal.展开更多
Several experiments are performed on the ShenGuang-Ⅱ laser facility to investigate an x-ray source and test radiography concepts. X-ray lines emitted from laser-produced plasmas are the most practical means of genera...Several experiments are performed on the ShenGuang-Ⅱ laser facility to investigate an x-ray source and test radiography concepts. X-ray lines emitted from laser-produced plasmas are the most practical means of generating these high intensity sources. By using a time-integrated space-resolved keV spectroscope and pinhole camera, potential helium-like titanium Kα x-ray backlighting (radiography) line source is studied as a function of laser wavelength, ratio of pre-pulse intensity to main pulse intensity, and laser intensity (from 7.25 to ~ 11.3 × 10^15 W/cm2). One-dimensional radiography using a grid consisting of 5 #m Au wires on 16 μm period and the pinhole-assisted point projection is tested. The measurements show that the size of the helium-like titanium Ka source from a simple foil target is larger than 100 ~m, and relative x-ray line emission conversion efficiency ~x from the incident laser light energy to helium- like titanium K-shell spectrum increases significantly with pre-pulse intensity increasing, increases rapidly with laser wavelength decreasing, and increases moderately with main laser intensity increasing. It is also found that a gold gird foils can reach an imaging resolution better than 5-μm featured with high contrast. It is further demonstrated that the pinhole-assisted point projection at such a level will be a novel two-dimensional imaging diagnostic technique for inertial confinement fusion experiments.展开更多
Modern medicine is unthinkable without X-rays. Accurate diagnosis, leading to effective treatment, is largely based on precise X-ray examinations. The creation of new, modern equipment and various medical procedures t...Modern medicine is unthinkable without X-rays. Accurate diagnosis, leading to effective treatment, is largely based on precise X-ray examinations. The creation of new, modern equipment and various medical procedures that meet the increased requirements are a priority in our time. X-ray examinations are of particular importance for the orthopedic and traumatological clinics, where they provide information about presence of a fracture in the patient’s body, about the concrete operation performed or about the effect of a suitable treatment. Along with their benefits X-rays have also a harmful effect. This requires special care to protect from this radiation. In this direction, research is constantly being done to improve the quality of radiation protection. Park MR, Lee KM and co-authors, compare the dose load obtained using C-arm and O-arm X-ray systems (which have the capability of combined 2D fluoroscopy and 3D computed tomography imaging). In their study, an orthopedic surgical procedure using C-arm and O-arm systems in 2D fluoroscopy modes was simulated. The radiation doses to susceptible organs of the operators were investigated. He results obtained show that the O-arm system delivered higher doses to the sensitive organs of the operator in all configurations [1]. The article of Stephen Balte briefly reviews the available technologies for measuring or estimation of patient skin dose in the interventional fluoroscopic environment, created by various X-ray equipment including C-arm systems. Given that many patients require multiple procedures, this documentation also aids in the planning of follow up visits [2]. Chong Hing Wong, Yoshihisa Kotani and co-authors evaluate the radiation exposures (RE) to the patient and surgeon during minimally invasive lumbar spine surgery with instrumentation using C-arm image intensifier or O-arm intraoperative CT. The results they get are in favor of the O-arm system [3]. The article “Virtual fluoroscopy for intraoperative C-arm positioning and radiation dose reduction” discusses positioning of an intraoperative C-arm system to achieve clear visualization of a particular anatomical feature by a system for virtual fluoroscopy (called FluoroSim) that could dramatically reduce time and received dose during the procedures. FluoroSim was found to reduce the radiation exposure required for C-arm positioning without reducing positioning time or accuracy, providing a potentially valuable tool to assist surgeons [4]. In our study, we performed practical measurements to show how the patient can be treated by applying most effective radiation protection when using a mobile C-arm X-ray system. For the study, we used exposure upon a phantom placed on the patient’s table. For an X-ray shielding, we used a protective apron with a lead equivalent of 1 mm, placed in two layers on the phantom. In each subsequent series of exposures, the protective apron was placed on the phantom, in a different position relative to the X-ray beam. The general conclusion of our study is that in order to obtain maximum protection from scattered radiation when using C-arm X-ray systems, the patient must be protected by a shielding with a suitable lead equivalent for the procedure performed which must be placed between patient’s body and X-ray tube, perpendicular to the X-ray beam pointed toward the region of interest.展开更多
Objective:To analyze the current situation of diagnostic radiology equipment in Chinese mainland and to understand changes in the past 20 years,including gaps with other countries,in order to provide a scientific basi...Objective:To analyze the current situation of diagnostic radiology equipment in Chinese mainland and to understand changes in the past 20 years,including gaps with other countries,in order to provide a scientific basis for the government to formulate relevant policies and regulations,and supplement Chinese data for international organizations.Methods:This survey adopted a uniformly designed questionnaire,which was completed by the investigators or the respondents.The survey was distributed to all medical institutions that provided diagnostic radiology services in 31 provinces,autonomous regions,and municipalities,excluding Hong Kong,Macao,Taiwan,and military,China.Results:The survey showed that in the past 20 years,the number of medical institutions and diagnostic radiology equipment per million population in China has increased substantially.Dental radiology equipment increased nine-fold,and mammography equipment and computed tomography scanners showed a nearly five-fold increase.The four types of diagnostic radiology equipment,general diagnostic,fluoroscopic,mammography,and computed tomography,were associated with the population.Dental radiology equipment and bone mineral densitometers were related only to the gross domestic product(GDP).A large gap remains in the diagnostic radiology equipment per million population between China and the equipment of health-care level(HCL)I countries.Conclusions:An imbalance in the number of units of diagnostic radiology equipment per million population was observed in the different regions,China.Various types of diagnostic radiology equipment,especially mammography equipment and computed tomography scanners,need to be deployed to meet the medical needs of different populations.展开更多
To simultaneously measure the He-like and H-like argon spectra, a two-crystal assembly has been deployed to replace the previous single crystal on the tangential x-ray crystal spectrometer.By selecting appropriate cry...To simultaneously measure the He-like and H-like argon spectra, a two-crystal assembly has been deployed to replace the previous single crystal on the tangential x-ray crystal spectrometer.By selecting appropriate crystals with similar Bragg angles, plasma temperature in the range of 0.5 keV≤Te≤10 keV and rotation can be diagnosed based on the He-like and H-like argon spectra. However, due to the added complexity in the two-crystal assembly in which the spectra might be diffracted by two crystals, some additional impurity lines were identified. For example,tungsten(W) lines in different ionization states were diffracted by the He-like and H-like crystal.Additional molybdenum(Mo) lines in the wavelength range of He-like and H-like argon spectra lines were also summarized. The existence of these additional lines caused the fitted temperature to be different from the true values. This paper presents the identified lines through a comparison with available database, which should be included in the fitting procedure.展开更多
Pulse X-ray diagnostics is capable of reducing the radiation exposure considerably. As for pulse X-ray diagnostic machines, which form pulses with the duration of 0.1 μs, using them one can get outstanding results in...Pulse X-ray diagnostics is capable of reducing the radiation exposure considerably. As for pulse X-ray diagnostic machines, which form pulses with the duration of 0.1 μs, using them one can get outstanding results in this area. This fact can be explained by the long period of luminophor persistence in intensifying X-ray luminescent screens. In this paper we present experimental data, comparing radiation doses, measured at pulse X-ray apparatus and apparatus of constant radiation.展开更多
X-ray inspection equipment is divided into small baggage inspection equipment and large cargo inspection equipment.In the case of inspection using X-ray scanning equipment,it is possible to identify the contents of go...X-ray inspection equipment is divided into small baggage inspection equipment and large cargo inspection equipment.In the case of inspection using X-ray scanning equipment,it is possible to identify the contents of goods,unauthorized transport,or hidden goods in real-time by-passing cargo through X-rays without opening it.In this paper,we propose a system for detecting dangerous objects in X-ray images using the Cascade Region-based Convolutional Neural Network(Cascade R-CNN)model,and the data used for learning consists of dangerous goods,storage media,firearms,and knives.In addition,to minimize the overfitting problem caused by the lack of data to be used for artificial intelligence(AI)training,data samples are increased by using the CP(copy-paste)algorithm on the existing data.It also solves the data labeling problem by mixing supervised and semi-supervised learning.The four comparative models to be used in this study are Faster Regionbased Convolutional Neural Networks Residual2 Network-101(Faster R-CNN_Res2Net-101)supervised learning,Cascade R-CNN_Res2Net-101_supervised learning,Cascade Region-based Convolutional Neural Networks Composite Backbone Network V2(CBNetV2)Network-101(Cascade R-CNN_CBNetV2Net-101)_supervised learning,and Cascade RCNN_CBNetV2-101_semi-supervised learning which are then compared and evaluated.As a result of comparing the performance of the four models in this paper,in case of Cascade R-CNN_CBNetV2-101_semi-supervised learning,Average Precision(AP)(Intersection over Union(IoU)=0.5):0.7%,AP(IoU=0.75):1.0%than supervised learning,Recall:0.8%higher.展开更多
We conducted experiments of oversensing generation of pacemaker (PM) and X-irradiation direction dependency of PM, and examined the oversensing suppression method, using 8 different types of PMs. It was found out from...We conducted experiments of oversensing generation of pacemaker (PM) and X-irradiation direction dependency of PM, and examined the oversensing suppression method, using 8 different types of PMs. It was found out from this experiment that oversensing would occur when some conditions (X-irradiation direction, X-irradiation intensity) are met. Oversensing occurred with the most low irradiation conditions (kV × mA) when PM was irradiated at 90° (vertically to C-MOS;Complementary Metal Oxide Semiconductor). The acuter the angle of irradiation is (α > 90° < α), the higher the irradiation conditions (kV × mA) at which oversensing start to occur. In plain X-ray photography, oversensing was confirmed under the irradiation conditions of (cervical spine, thoracic spine, lateral thoracic spine, rib, shoulder joint, collarbone, humerus, and chest).Once the irradiation angle and irradiation conditions (kV × mA) are available, oversensing is predictable to some extent. Our findings will help to predict oversensing generation of plain X-ray photography and suppress oversensing. Oversensing can be suppressed in most of the radiography by lowering tube current to 100 mA, but a 1.0 mm High-Density Tungsten Sheet must be put on PM in high tube voltage radiography.展开更多
AIM: To determine the utility of X-ray in identifying non-metallic foreign body(FB) and assess inter-radiologist agreement in identifying non-metal FB. METHODS: Focus groups of nurses, fellows, and attending physician...AIM: To determine the utility of X-ray in identifying non-metallic foreign body(FB) and assess inter-radiologist agreement in identifying non-metal FB. METHODS: Focus groups of nurses, fellows, and attending physicians were conducted to determine commonly ingested objects suitable for inclusion. Twelve potentially ingested objects(clay, plastic bead, crayon, plastic ring, plastic army figure, glass bead, paperclip, drywall anchor, eraser, Lego?, plastic triangle toy, and barrette) were embedded in a gelatin slab placed on top of a water-equivalent phantom to simulate density of a child's abdomen. The items were selected due to wide availability and appropriate size for accidental pediatric ingestion. Plain radiography of the embedded FBs was obtained. Five experienced radiologists blinded to number and types of objects were asked to identify the FBs. The radiologist was first asked to count thenumber of items that were visible then to identify the shape of each item and describe it to a study investigator who recorded all responses. Overall inter-rater reliability was analyzed using percent agreement and κ coefficient. We calculated P value to assess the probability of error involved in accepting the κ value.RESULTS: Fourteen objects were radiographed including 12 original objects and 2 duplicates. The model's validity was supported by clear identification of a radiolucent paperclip as a positive control, and lack of identification of plastic beads(negative control) despite repeated inclusion. Each radiologist identified 7-9 of the 14 objects(mean 8, 67%). Six unique objects(50%) were identified by all radiologists and four unique objects(33%) were not identified by any radiologist(plastic bead, LegoTM, plastic triangle toy, and barrette). Identification of objects that were not present, false-positives, occurred 1-2 times per radiologist(mean 1.4). An additional 17% of unique objects were identified by less than half of the radiologists. Agreement between radiologists was considered almost perfect(kappa 0.86 ± 0.08, P < 0.0001).CONCLUSION: We demonstrate potential non-identification of commonly ingested non-metal FBs in children. A registry for radiographic visibility of ingested objects should be created to improve clinical decision-making.展开更多
CuKβ radiation with a wavelength of λ = 1.3923 ? is recommended for crystal structure determination from X-ray powder diffraction using the Rietfeld method. A highly sensitive image plate detector is able to collect...CuKβ radiation with a wavelength of λ = 1.3923 ? is recommended for crystal structure determination from X-ray powder diffraction using the Rietfeld method. A highly sensitive image plate detector is able to collect enough intensity to record a brilliant X-ray powder pattern in a reasonable time, compared to CuKα1 radiation used today. Especially atomic displacement coefficients could be determined more precisely with the much greater number of reflections recorded. A double-radius Guinier camera attached to a micro-focus rotating anode tube ensures increased brilliance besides high resolution. A simple construction specification is presented to make smart cylindrically bent Ge(111) or Si(111) X-ray monochromators that deliver focused CuKβ radiation. The highly linear response of image plate detectors allows removing of fluorescence radiation simply as background of the pattern. The proposed equipment is a cost-efficient alternative to a liquid gallium-metal-jet X-ray source with maximum power load and a similar wavelength of λ(GaKα1) = 1.34013 ?.展开更多
文摘Diagnostic equipment can contribute significantly to production and quality.Maintenance budget however is limited so that having a systematic method for allocating part ofit to diagnostic equipment is of great potential value. In this paper, a deterministic dynamicprogramming model for assisting in determining the optimum policy for investment in diagnosticequipment for multistage production systems is developed. The optimum pelticy is determined interms of the amount of equipment used at each stage of production and yields the maximumreturn for the entire system.
基金National Natural Science Foundation of China(No.11805212)National Key Research and Development Program of China(No.2019YFE03080200)。
文摘Monochromatic x-ray imaging is an essential method for plasma diagnostics related to density information.Large-field high-resolution monochromatic imaging of a He-like iron(Fe XXV)Kαcharacteristic line(6.701 keV)for laser plasma diagnostics was achieved using a developed toroidal crystal x-ray imager.A high-index crystal orientation Ge(531)wafer with a Bragg angle of 75.37°and the toroidal substrate were selected to obtain sufficient diffraction efficiency and compensate for astigmatism under oblique incidence.A precise offline assembly method of the toroidal crystal imager based on energy substitution was proposed,and a spatial resolution of 3-7μm was obtained by toroidal crystal imaging of a 600 line-pairs/inch Au grid within an object field of view larger than 1.0 mm.The toroidal crystal x-ray imager has been successfully tested via side-on backlight imaging experiments of the sinusoidal modulation target and a 1000 line-pairs/inch Au grid with a linewidth of 5μm using an online alignment method based on dual positioning balls to indicate the target and backlighter.This paper describes the optical design,adjustment method,and experimental results of a toroidal crystal system in a laboratory and laser facility.
文摘Background: Nosocomial infections have become a major challenge in healthcare facilities as they affect the quality of medical care. Radiological imaging plays a crucial role in medical diagnosis. However, the equipment and accessories used increase the risk of transmission of nosocomial bacteria. Objective: This study aims to reveal the extent and nature of microbiological contamination in four hospital diagnostic imaging departments to determine their potential role in the spread of nosocomial bacteria and to evaluate the effectiveness of routine daily disinfection practices in controlling microorganisms in diagnostic imaging departments. Methods & Results: In each department, swabs were taken from the surfaces of selected parts of the equipment and accessories three times a day (early morning, noon, and evening) for five consecutive days. Bacteria were isolated from 65 swabs (36.1% of all samples). The bacteria were isolated 3 times (4.6%) in the morning, 16 times (24.6%) at midday, and 46 times (70.7%) in the evening. The bacteria isolated were Escherichia coli (isolated 34 times;52.3%), Staphylococcus aureus (20 times;30.8%), Staphylococcus epidermidis (6 times;9.3%), and Klebsiella species (5 times;7.7%). Discussion & Conclusion: Findings demonstrated that radiology equipment and accessories are not free of bacteria and further improvements in the sterilization and disinfection of radiology equipment and accessories are needed to protect staff and patients from nosocomial infections.
文摘A diagnostic system of soft x-ray diode-array was set up for HT-7 superconducting tokamak. The system consists of two slot-aperture cameras and is capable of measuring the soft x-ray emission from the plasma on HT-7 device with a high resolution in space and a high response in time. Both cameras, located separately in a horizontal port and a vertical port each with thirty-seven detectors of An-Si surface-barrier diode (SBD) can view the same toroidal cross-section of the plasma from different poloidal chords. In this paper, the structure, principle and performance of the diagnostic system are described and some experimental results observed are presented.
文摘X-Ray sources, detectors and optical components are now used in a wide range of applications. What is crucial is the absolute calibration of such devices to permit a quantitative assessment of the system under study. A new X-ray laboratory has been built in Frascati (ENEA) to develop diagnostics for nuclear fusion experiments and study applications of these X-ray techniques in other domains, like new material science, non destructive tests and so on. An in-house developed selfconsistent calibration procedure is described that permits the absolute calibration of sources (X-ray emitted fluxes) and detectors (detection efficiencies) as function of the X-ray photon energy, in the range 2 - 120 keV. The calibration procedure involves the use of an in-house developed code that also predicts the spectral response of any detector in any experimental condition that can be setup in the laboratory. The procedure has been then applied for the calibration and characterisation of gas and solid state imaging detectors, such as Medipix-2, GEM gas detector, CCD camera, Cd-Te C-MOS imager, demonstrating the versatility of the method developed here.
基金National Natural Science Foundation of China (No. 11575184).
文摘A novel real time fast electron bremsstrahlung (FEB) diagnostic system based on the lutetium yttrium oxyorthosilicate scintillators (LYSO) and silicon photomultipliers (SiPM) has been developed for tokamak.The diagnostic system is dedicated to study the FEB emission in the hard x-ray (HXR) energy range between 10 and 200 keV during the lower hybrid current drive.The system consists of a detection module and three data acquisition and processing (DAP)boards.The detection module consists of annulus LYSO-SiPM detector array and a 12-channel preamplifier module.The DAP boards upload the data to the host computer for displaying and storing through PXI bus.The time and space resolutions of the system are 10 ms and 4 cm,respectively.The experimental results can show the evolution over time and the spatial distribution of FEB.This paper presents the system performance and typical discharge results.
文摘Medical diagnostic tables are widely used inthemedical diagnostic equipment. For multifarious diagnostic needs, the medical diagnostic table works in various operating modes. In order to ensure patient safety, safety factor of medical diagnostic table must meet safety requirement. The paper puts forward a method to find relations between key parameters and stress of table, identify maximum stress modes, reduce modes number of load test, and remove conservative high stress areas from finite element analysis result, by synthesizingthestress result of finite element analysis and measurement data for various operating modes of medical diagnostic table. It will help shorten test time, avoid over strength design, and reduce table’s cost. An application example of the method is presented by evaluating a specific CT medical diagnostictable. This method can be a reference for safety evaluation of all medical diagnostic tables.
文摘The ongoing coronavirus disease 2019(COVID-19)pandemic continues to present diagnostic challenges.The use of thoracic radiography has been studied as a method to improve the diagnostic accuracy of COVID-19.The‘Living’Cochrane Systematic Review on the diagnostic accuracy of imaging tests for COVID-19 is continuously updated as new information becomes available for study.In the most recent version,published in March 2021,a meta-analysis was done to determine the pooled sensitivity and specificity of chest X-ray(CXR)and lung ultrasound(LUS)for the diagnosis of COVID-19.CXR gave a sensitivity of 80.6%(95%CI:69.1-88.6)and a specificity of 71.5%(95%CI:59.8-80.8).LUS gave a sensitivity rate of 86.4%(95%CI:72.7-93.9)and specificity of 54.6%(95%CI:35.3-72.6).These results differed from the findings reported in the recent article in this journal where they cited the previous versions of the study in which a metaanalysis for CXR and LUS could not be performed.Additionally,the article states that COVID-19 could not be distinguished,using chest computed tomography(CT),from other respiratory diseases.However,the latest review version identifies chest CT as having a specificity of 80.0%(95%CI:74.9-84.3),which is much higher than the previous version which indicated a specificity of 61.1%(95%CI:42.3-77.1).Therefore,CXR,chest CT and LUS have the potential to be used in conjunction with other methods in the diagnosis of COVID-19.
文摘The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were proposed to use together with rapid digital protection against short-circuit regimes in transformer windings. This paper presents an application’s experience of LVI-testing, some results of the use of Frequency Response Analysis (FRA) to check the condition of transformer windings and infra-red control results of electrical equipment. The LVI method and short-circuit inductive reactance measurements are sensitive for detecting such faults as radial, axial winding deformations, a twisting of low-voltage or regulating winding, a losing of winding’s pressing and others.
基金partially supported by the Natural Science Foundation of China(Nos.12004353,11975214,11991071,11905202,12175212,and 12120101005)the Key Laboratory Foundation of the Science and Technology on Plasma Physics Laboratory(Nos.6142A04200103 and 6142A0421010).
文摘Currently,with the advent of high-repetition-rate laser-plasma experiments,the demand for online diagnosis for the X-ray spectrum is increasing because the laser-plasma-generated X-ray spectrum is very important for characterizing electron dynamics and applications.In this study,scintillators and silicon PIN(P-type–intrinsic-N-type semiconductor)diodes were used to construct a wideband online filter stack spectrometer.The X-ray sensor and filter arrangement was optimized using a genetic algorithm to minimize the condition number of the response matrix.Consequently,the unfolding error was significantly reduced based on numerical experiments.The detector responses were quantitatively calibrated by irradiating the scintillator and PIN diode with various nuclides and comparing the measuredγ-ray peaks.A prototype 15-channel spectrometer was developed by integrating an X-ray detector with front-and back-end electronics.The prototype spectrometer could record X-ray pulse signals at a repetition rate of 1 kHz.Furthermore,an optimized spectrometer was employed to record the real-time spectra of laser-driven bremsstrahlung sources.This optimized spectrometer offers a compact solution for spectrum diagnostics of ultrashort X-ray pulses,exhibiting improved accuracy in terms of spectrum measurements and repetition rates,and could be widely used in next-generation high-repetition-rate high-power laser facilities.
文摘Diagnostic Reference Levels (DRLs) are indicators that allow assessing the quality of equipment and procedures from the point of view of the doses delivered to patients and subsequently initiate corrective actions if necessary. The purpose of this study is to encourage health professionals to investigate patient radiation doses and to determine whether those doses comply with the principles of radiation protection in medical fields so as to improve practices by reducing patient exposure without reducing clinical effectiveness. To perform this work, we have investigated patient doses for different radiological examinations from six (6) medical centers in Dakar, including the following nine routine types: chest (PA), abdomen (AP), pelvis (AP), cervical spine (AP), lumbar spine (AP, Lat), hip (AP), thoracic spine (AP, Lat). Three types of data were collected, <em>i.e.</em>, X-ray tube machine data, patient data and output measurements. The data were analyzed statistically and the median, minimum, maximum, and third quartile values were calculated and displayed throughout boxplots graphs for all exams and medical centers. The two sigma range (95% confidence interval) was also checked. Comparison of third quartiles of Entrance Surface Dose (ESD) and Dose Area Product (DAP) by type of examination with recommended international DRLs was performed. The third quartile of ESD for pelvis (AP) and thoracic spine (AP) was up to 16% and 38% higher, respectively than their corresponding DRLs in the European Commission Report RP 180 Part 2. For all exams, except thoracic spine (lat), the third quartiles of the dose area product were higher than the corresponding DRLs in the above report. The source of dose variability between medical centers was related to many parameters such as poor radiographic techniques, lack of modern X-ray machines and adequately documented radiation protection practices. The results show the need to develop protocols for dose measurement as well as to carry out quality assurance programs and dose optimization in Senegal.
基金supported by the National High Technology Development Program of China (Grant No. 2009AA8046006)
文摘Several experiments are performed on the ShenGuang-Ⅱ laser facility to investigate an x-ray source and test radiography concepts. X-ray lines emitted from laser-produced plasmas are the most practical means of generating these high intensity sources. By using a time-integrated space-resolved keV spectroscope and pinhole camera, potential helium-like titanium Kα x-ray backlighting (radiography) line source is studied as a function of laser wavelength, ratio of pre-pulse intensity to main pulse intensity, and laser intensity (from 7.25 to ~ 11.3 × 10^15 W/cm2). One-dimensional radiography using a grid consisting of 5 #m Au wires on 16 μm period and the pinhole-assisted point projection is tested. The measurements show that the size of the helium-like titanium Ka source from a simple foil target is larger than 100 ~m, and relative x-ray line emission conversion efficiency ~x from the incident laser light energy to helium- like titanium K-shell spectrum increases significantly with pre-pulse intensity increasing, increases rapidly with laser wavelength decreasing, and increases moderately with main laser intensity increasing. It is also found that a gold gird foils can reach an imaging resolution better than 5-μm featured with high contrast. It is further demonstrated that the pinhole-assisted point projection at such a level will be a novel two-dimensional imaging diagnostic technique for inertial confinement fusion experiments.
文摘Modern medicine is unthinkable without X-rays. Accurate diagnosis, leading to effective treatment, is largely based on precise X-ray examinations. The creation of new, modern equipment and various medical procedures that meet the increased requirements are a priority in our time. X-ray examinations are of particular importance for the orthopedic and traumatological clinics, where they provide information about presence of a fracture in the patient’s body, about the concrete operation performed or about the effect of a suitable treatment. Along with their benefits X-rays have also a harmful effect. This requires special care to protect from this radiation. In this direction, research is constantly being done to improve the quality of radiation protection. Park MR, Lee KM and co-authors, compare the dose load obtained using C-arm and O-arm X-ray systems (which have the capability of combined 2D fluoroscopy and 3D computed tomography imaging). In their study, an orthopedic surgical procedure using C-arm and O-arm systems in 2D fluoroscopy modes was simulated. The radiation doses to susceptible organs of the operators were investigated. He results obtained show that the O-arm system delivered higher doses to the sensitive organs of the operator in all configurations [1]. The article of Stephen Balte briefly reviews the available technologies for measuring or estimation of patient skin dose in the interventional fluoroscopic environment, created by various X-ray equipment including C-arm systems. Given that many patients require multiple procedures, this documentation also aids in the planning of follow up visits [2]. Chong Hing Wong, Yoshihisa Kotani and co-authors evaluate the radiation exposures (RE) to the patient and surgeon during minimally invasive lumbar spine surgery with instrumentation using C-arm image intensifier or O-arm intraoperative CT. The results they get are in favor of the O-arm system [3]. The article “Virtual fluoroscopy for intraoperative C-arm positioning and radiation dose reduction” discusses positioning of an intraoperative C-arm system to achieve clear visualization of a particular anatomical feature by a system for virtual fluoroscopy (called FluoroSim) that could dramatically reduce time and received dose during the procedures. FluoroSim was found to reduce the radiation exposure required for C-arm positioning without reducing positioning time or accuracy, providing a potentially valuable tool to assist surgeons [4]. In our study, we performed practical measurements to show how the patient can be treated by applying most effective radiation protection when using a mobile C-arm X-ray system. For the study, we used exposure upon a phantom placed on the patient’s table. For an X-ray shielding, we used a protective apron with a lead equivalent of 1 mm, placed in two layers on the phantom. In each subsequent series of exposures, the protective apron was placed on the phantom, in a different position relative to the X-ray beam. The general conclusion of our study is that in order to obtain maximum protection from scattered radiation when using C-arm X-ray systems, the patient must be protected by a shielding with a suitable lead equivalent for the procedure performed which must be placed between patient’s body and X-ray tube, perpendicular to the X-ray beam pointed toward the region of interest.
文摘Objective:To analyze the current situation of diagnostic radiology equipment in Chinese mainland and to understand changes in the past 20 years,including gaps with other countries,in order to provide a scientific basis for the government to formulate relevant policies and regulations,and supplement Chinese data for international organizations.Methods:This survey adopted a uniformly designed questionnaire,which was completed by the investigators or the respondents.The survey was distributed to all medical institutions that provided diagnostic radiology services in 31 provinces,autonomous regions,and municipalities,excluding Hong Kong,Macao,Taiwan,and military,China.Results:The survey showed that in the past 20 years,the number of medical institutions and diagnostic radiology equipment per million population in China has increased substantially.Dental radiology equipment increased nine-fold,and mammography equipment and computed tomography scanners showed a nearly five-fold increase.The four types of diagnostic radiology equipment,general diagnostic,fluoroscopic,mammography,and computed tomography,were associated with the population.Dental radiology equipment and bone mineral densitometers were related only to the gross domestic product(GDP).A large gap remains in the diagnostic radiology equipment per million population between China and the equipment of health-care level(HCL)I countries.Conclusions:An imbalance in the number of units of diagnostic radiology equipment per million population was observed in the different regions,China.Various types of diagnostic radiology equipment,especially mammography equipment and computed tomography scanners,need to be deployed to meet the medical needs of different populations.
基金partially supported by the National Magnetic Confinement Fusion Science Program of China(No.2015GB103002)Key Program of Research and Development of Hefei Science Center(No.2017HSC-KPRD002)+1 种基金the Major Program of Development Foundation of Hefei Center for Physical Science and Technology(No.2016FXZY008)the CASHIPS Director’s Funds Grant(No.YZJJ201612)
文摘To simultaneously measure the He-like and H-like argon spectra, a two-crystal assembly has been deployed to replace the previous single crystal on the tangential x-ray crystal spectrometer.By selecting appropriate crystals with similar Bragg angles, plasma temperature in the range of 0.5 keV≤Te≤10 keV and rotation can be diagnosed based on the He-like and H-like argon spectra. However, due to the added complexity in the two-crystal assembly in which the spectra might be diffracted by two crystals, some additional impurity lines were identified. For example,tungsten(W) lines in different ionization states were diffracted by the He-like and H-like crystal.Additional molybdenum(Mo) lines in the wavelength range of He-like and H-like argon spectra lines were also summarized. The existence of these additional lines caused the fitted temperature to be different from the true values. This paper presents the identified lines through a comparison with available database, which should be included in the fitting procedure.
文摘Pulse X-ray diagnostics is capable of reducing the radiation exposure considerably. As for pulse X-ray diagnostic machines, which form pulses with the duration of 0.1 μs, using them one can get outstanding results in this area. This fact can be explained by the long period of luminophor persistence in intensifying X-ray luminescent screens. In this paper we present experimental data, comparing radiation doses, measured at pulse X-ray apparatus and apparatus of constant radiation.
文摘X-ray inspection equipment is divided into small baggage inspection equipment and large cargo inspection equipment.In the case of inspection using X-ray scanning equipment,it is possible to identify the contents of goods,unauthorized transport,or hidden goods in real-time by-passing cargo through X-rays without opening it.In this paper,we propose a system for detecting dangerous objects in X-ray images using the Cascade Region-based Convolutional Neural Network(Cascade R-CNN)model,and the data used for learning consists of dangerous goods,storage media,firearms,and knives.In addition,to minimize the overfitting problem caused by the lack of data to be used for artificial intelligence(AI)training,data samples are increased by using the CP(copy-paste)algorithm on the existing data.It also solves the data labeling problem by mixing supervised and semi-supervised learning.The four comparative models to be used in this study are Faster Regionbased Convolutional Neural Networks Residual2 Network-101(Faster R-CNN_Res2Net-101)supervised learning,Cascade R-CNN_Res2Net-101_supervised learning,Cascade Region-based Convolutional Neural Networks Composite Backbone Network V2(CBNetV2)Network-101(Cascade R-CNN_CBNetV2Net-101)_supervised learning,and Cascade RCNN_CBNetV2-101_semi-supervised learning which are then compared and evaluated.As a result of comparing the performance of the four models in this paper,in case of Cascade R-CNN_CBNetV2-101_semi-supervised learning,Average Precision(AP)(Intersection over Union(IoU)=0.5):0.7%,AP(IoU=0.75):1.0%than supervised learning,Recall:0.8%higher.
文摘We conducted experiments of oversensing generation of pacemaker (PM) and X-irradiation direction dependency of PM, and examined the oversensing suppression method, using 8 different types of PMs. It was found out from this experiment that oversensing would occur when some conditions (X-irradiation direction, X-irradiation intensity) are met. Oversensing occurred with the most low irradiation conditions (kV × mA) when PM was irradiated at 90° (vertically to C-MOS;Complementary Metal Oxide Semiconductor). The acuter the angle of irradiation is (α > 90° < α), the higher the irradiation conditions (kV × mA) at which oversensing start to occur. In plain X-ray photography, oversensing was confirmed under the irradiation conditions of (cervical spine, thoracic spine, lateral thoracic spine, rib, shoulder joint, collarbone, humerus, and chest).Once the irradiation angle and irradiation conditions (kV × mA) are available, oversensing is predictable to some extent. Our findings will help to predict oversensing generation of plain X-ray photography and suppress oversensing. Oversensing can be suppressed in most of the radiography by lowering tube current to 100 mA, but a 1.0 mm High-Density Tungsten Sheet must be put on PM in high tube voltage radiography.
文摘AIM: To determine the utility of X-ray in identifying non-metallic foreign body(FB) and assess inter-radiologist agreement in identifying non-metal FB. METHODS: Focus groups of nurses, fellows, and attending physicians were conducted to determine commonly ingested objects suitable for inclusion. Twelve potentially ingested objects(clay, plastic bead, crayon, plastic ring, plastic army figure, glass bead, paperclip, drywall anchor, eraser, Lego?, plastic triangle toy, and barrette) were embedded in a gelatin slab placed on top of a water-equivalent phantom to simulate density of a child's abdomen. The items were selected due to wide availability and appropriate size for accidental pediatric ingestion. Plain radiography of the embedded FBs was obtained. Five experienced radiologists blinded to number and types of objects were asked to identify the FBs. The radiologist was first asked to count thenumber of items that were visible then to identify the shape of each item and describe it to a study investigator who recorded all responses. Overall inter-rater reliability was analyzed using percent agreement and κ coefficient. We calculated P value to assess the probability of error involved in accepting the κ value.RESULTS: Fourteen objects were radiographed including 12 original objects and 2 duplicates. The model's validity was supported by clear identification of a radiolucent paperclip as a positive control, and lack of identification of plastic beads(negative control) despite repeated inclusion. Each radiologist identified 7-9 of the 14 objects(mean 8, 67%). Six unique objects(50%) were identified by all radiologists and four unique objects(33%) were not identified by any radiologist(plastic bead, LegoTM, plastic triangle toy, and barrette). Identification of objects that were not present, false-positives, occurred 1-2 times per radiologist(mean 1.4). An additional 17% of unique objects were identified by less than half of the radiologists. Agreement between radiologists was considered almost perfect(kappa 0.86 ± 0.08, P < 0.0001).CONCLUSION: We demonstrate potential non-identification of commonly ingested non-metal FBs in children. A registry for radiographic visibility of ingested objects should be created to improve clinical decision-making.
文摘CuKβ radiation with a wavelength of λ = 1.3923 ? is recommended for crystal structure determination from X-ray powder diffraction using the Rietfeld method. A highly sensitive image plate detector is able to collect enough intensity to record a brilliant X-ray powder pattern in a reasonable time, compared to CuKα1 radiation used today. Especially atomic displacement coefficients could be determined more precisely with the much greater number of reflections recorded. A double-radius Guinier camera attached to a micro-focus rotating anode tube ensures increased brilliance besides high resolution. A simple construction specification is presented to make smart cylindrically bent Ge(111) or Si(111) X-ray monochromators that deliver focused CuKβ radiation. The highly linear response of image plate detectors allows removing of fluorescence radiation simply as background of the pattern. The proposed equipment is a cost-efficient alternative to a liquid gallium-metal-jet X-ray source with maximum power load and a similar wavelength of λ(GaKα1) = 1.34013 ?.